Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747281

RESUMO

This study introduces a new, facile method to synthesize silver clusters from aqueous silver ion solution by using high intensity femtosecond pulse laser irradiation. The particles obtained in the absence of reducing or capping agents are 1-17 nm in size and presented quantum properties, as characterized by fluorescence, but did not exhibit plasmon signals, which is not a common characteristic of conventional silver nanoparticles. In a further development, small silver quantum clusters (∼1 nm) were bound in situ to wet-spun filaments of cellulose nanofibrils by pulsed laser irradiation. The obtained hybrid filaments as well as free silver quantum clusters revealed a catalytic activity remarkably higher than that of free gold quantum clusters; moreover, the hybrid filaments were found to show improved stability and cycling performance for silver-based catalysis. The present results indicate the potential of femtosecond laser irradiation to generate clusters as well as hybrid systems with excellent performance and reactivity.

2.
ACS Appl Mater Interfaces ; 16(17): 22532-22546, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629598

RESUMO

Electroactive filament electrodes were synthesized by wet-spinning of cellulose nanofibrils (CNF) followed by femtosecond pulse laser deposition of ZnO (CNF@ZnO). A layer of conducting conjugated polymers was further adsorbed by in situ polymerization of either pyrrole or aniline, yielding systems optimized for electron conduction. The resultant hybrid filaments were thoroughly characterized by imaging, spectroscopy, electrochemical impedance, and small- and wide-angle X-ray scattering. For the filaments using polyaniline, the measured conductivity was a result of the synergy between the inorganic and organic layers, while the contribution was additive in the case of the systems containing polypyrrole. This observation is rationalized by the occurrence of charge transfer between ZnO and polyaniline but not that with polypyrrole. The introduced conductive hybrid filaments displayed a performance that competes with that of metallic counterparts, offering great promise for next-generation filament electrodes based on renewable nanocellulose.

3.
J Colloid Interface Sci ; 657: 567-579, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38071806

RESUMO

Monitoring blood glucose level is critical, since its abnormality leads to diabetes and causes death, even though glucose is essential for human living. Herein, the sensing study was performed on electrochemical nonenzymatic glucose sensors, which are composed of an Au nanocluster (AuNC) catalyst deposited on a metallic nanotube array (MeNTA) and polypyrrole nanowire (PPyNW). The AuNC was produced by irradiating a femtosecond pulse laser to the Au precursor solution, and it is a simple and facile method. The successful deposition of AuNC on both MeNTA and PPyNW was confirmed by means of the surface morphology and the Au content increase. On the exploration by cyclic voltammetry in alkaline condition, AuNC/MeNTA electrodes showed better performance than AuNC/PPyNW electrodes: The former was a remarkable electrocatalytic detector towards glucose oxidation with better sensitivity, lower detection limit, wider linear range, and longer-term stability without interference from potential interfering agents such as ascorbic acid, urea, NaCl, KCl, etc. Moreover, nonenzymatic AuNC/MeNTA electrodes exhibited high precision and accuracy in real human blood samples and, thus, can be a promising candidate in glucose sensing applications.


Assuntos
Técnicas Biossensoriais , Nanotubos , Nanofios , Humanos , Polímeros , Pirróis , Nanofios/química , Técnicas Biossensoriais/métodos , Glucose/química , Eletrodos , Catálise , Técnicas Eletroquímicas
4.
Nanomaterials (Basel) ; 13(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37887956

RESUMO

The motion of magnetic particles under magnetic fields is an object to be solved in association with basic and practical phenomena. Movement phenomena of magnetite-encapsulated graphene particles at air-water interfaces were evaluated by manufacturing a feedback control system of the magnetic field to cause the motion of particles due to magnetic torque. A homogeneous magnetic field was generated using two pairs of electromagnets located perpendicular to each other, which were connected to an electronic switch. The system influenced the translational movement and the self-rotational speed of magnetic particles located at a center on the surface of fluid media in a continuous duty cycle. Operating the particle at a remote control in the same duty cycle at the air-water surface, the short and elongated magnetic particles successfully rotated. In addition, the rotational speed of the curved particle was slower than that of the elongated particle. The results indicate that the translational and self-rotational movements of magnetite-encapsulated graphene particles at the air-water interface under the external magnetic field are size- and shape-dependent for the speed and the direction. A short magnetic particle was used as a target particle to rotate on cancer cell lines, aiming to study the advantage of this method to induce the growth of HeLa cells. It was monitored for up to 4 days with and without magnetic particles by checking the viability and morphology of cells before and after the electromagnetic treatment. As an outcome, the movement of magnetic particles reduced the number of biological cells, at least on HeLa cells, but it was inactive on the viability of HeLa cells.

5.
Bioelectrochemistry ; 152: 108430, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37043880

RESUMO

In this work, we demonstrated a novel cancer antigen 125 (CA125) biomarker detection based on electrochemical immunosensor. The biomarker on conductive composite materials of carbon ink/carbon dot/zine oxide (C-ink/CD/ZnO) was employed as an electrode platform by using ITO substrate to enhance the interaction of antibodies (Ab) with supporting catalytic performance of ZnO as a labeling signal molecule. They were a scientist attention for biosensor with chemical stability, strong biocompatibility, high conductive signal, and accuracy. Moreover, the nanocomposite of silver@polypyrrole (Ag@PPy) was used as a potential redox mediator. The labeled construction with Ag@PPy was more accuracy than that of a free-labeled. The created immunosensor was a wide linear range as 1 ag·mL-1 - 100 ng·mL-1 and a low limitation of detection as 0.1 fg·mL-1 under the optimal condition. This suggested that the immunosensor is considered to be an accurate and efficient diagnostic tool for CA125 and other biomarkers detection in actual sample analysis for clinic.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias Ovarianas , Óxido de Zinco , Feminino , Humanos , Carbono/química , Polímeros/química , Pirróis , Antígeno Ca-125/análise , Tinta , Técnicas Eletroquímicas , Imunoensaio , Limite de Detecção , Nanopartículas Metálicas/química
6.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903717

RESUMO

Combination therapy for cancer is expected for the synergetic effect of different treatments, and the development of promising carrier materials is demanded for new therapeutics. In this study, nanocomposites including functional nanoparticles (NPs) such as samarium oxide NP for radiotherapy and gadolinium oxide NP as a magnetic resonance imaging agent were synthesized and chemically combined with iron oxide NP-embedded or carbon dot-coating iron oxide NP-embedded carbon nanohorn carriers, where iron oxide NP is a hyperthermia reagent and carbon dot exerts effects on photodynamic/photothermal treatments. These nanocomposites exerted potential for delivery of anticancer drugs (doxorubicin, gemcitabine, and camptothecin) even after being coated with poly(ethylene glycol). The co-delivery of these anticancer drugs played better drug-release efficacy than the independent drug delivery, and the thermal and photothermal procedures enlarged the drug release. Thus, the prepared nanocomposites can be expected as materials to develop advanced medication for combination treatment.

7.
Pharmaceutics ; 15(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839948

RESUMO

The prognosis of castration-resistant prostate cancer (CRPC) is technically scarce; therefore, a novel treatment for CRPC remains warranted. To this end, hyperthermia (HT) was investigated as an alternative therapy. In this study, the analysis focused on the association between CRPC and heat shock protein nuclear import factor "hikeshi (HIKESHI)", a factor of heat tolerance. Silencing the HIKESHI expression of 22Rv1 cells (human CRPC cell line) treated with siRNAs inhibited the translocation of heat shock protein 70 from the cytoplasm to the nucleus under heat shock and enhanced the effect of hyperthermia. Moreover, a novel magnetic nanoparticle was developed via binding carbon nanohorn (CNH) and iron oxide nanoparticle (IONP) with 3-aminopropylsilyl (APS). Tumor-bearing model mice implanted with 22 Rv1 cells were examined to determine the effect of magnetic HT (mHT). We locally injected CNH-APS-IONP into the tumor, which was set under an alternative magnetic field and showed that tumor growth in the treatment group was significantly suppressed compared with other groups. This study suggests that HIKESHI silencing enhances the sensitivity of 22Rv1 cells to HT, and CNH-APTES-IONP deserves consideration for mHT.

8.
Nanomaterials (Basel) ; 12(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36432368

RESUMO

This work reports cascade Förster resonance energy transfer (FRET)-based n-type (ZnO) and p-type (NiO) dye-sensitized solar cells (DSSCs), discussing approaches to enhance their overall performance. Although DSSCs suffer from poorer performance than other solar cells, the use of composites with carbon dot (Cdot) can enhance the power conversion efficiency (PCE) of DSSCs. However, further improvements are demanded through molecular design to stimulate DSSCs. Here, a photosensitized system based on a cascade FRET was induced alongside the conventional photosensitizer dye (N719). To N719 in a DSSC is transferred the energy cascaded through donor fluorescence materials (pyrene, 3-acetyl-7-N,N-diethyl-coumarin or coumarin and acridine orange), and this process enhances the light-harvesting properties of the sensitizers in the DSSC across a broad region of the solar spectrum. PCE values of 10.7 and 11.3% were achieved for ZnO/Cdot and NiO/Cdot DSSCs, respectively. These high PCE values result from the energy transfer among multi-photosensitizers (cascade FRET fluorophores, N719, and Cdot). Moreover, Cdot can play a role in intensifying the adsorption of dyes and discouraging charge recombination on the semiconductor. The present results raise expectations that a significant improvement in photovoltaic performance can be attained of DSSCs exploiting the cascade FRET photonics phenomenon.

9.
J Funct Biomater ; 13(4)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36412860

RESUMO

Carbon dots (Cdots) are known as photosensitizers in which the nitrogen doping is able to improve the oxygen-photosensitization performance and singlet-oxygen generation. Herein, the characteristics of nanoconjugates of nitrogen-doped Cdots and doxorubicin were compared with the property of nitrogen-doped Cdots alone. The investigation was performed for the evaluation of pH-dependent zeta potential, quantum yield, photosensitization efficiency and singlet-oxygen generation, besides spectroscopy (UV-visible absorption and fluorescence spectra) and cytotoxicity on cancer model (HeLa cells). Encapsulation efficiency, drug loading, and drug release without and with light irradiation were also carried out. These investigations were always pursued under the comparison among different nitrogen amounts (ethylenediamine/citric acid = 1-5) in Cdots, and some characteristics strongly depended on nitrogen amounts in Cdots. For instance, surface charge, UV-visible absorbance, emission intensity, quantum yield, photosensitization efficiency and singlet-oxygen generation were most effective at ethylenediamine/citric acid = 4. Moreover, strong conjugation of DOX to Cdots via π-π stacking and electrostatic interactions resulted in a high carrier efficiency and an effective drug loading and release. The results suggested that nitrogen-doped Cdots can be considered promising candidates to be used in a combination therapy involving photodynamic and anticancer strategies under the mutual effect with DOX.

10.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234984

RESUMO

Non-noble metal-based bifunctional electrocatalysts may be a promising new resource for electrocatalytic water-splitting devices. In this work, transition metal (cobalt)-incorporated graphitic carbon nitride was synthesized and fabricated in electrodes for use as bifunctional catalysts. The optimum catalytic activity of this bifunctional material for the hydrogen evolution reaction (HER), which benefitted at a cobalt content of 10.6 wt%, was promoted by the highest surface area and conductivity. The activity achieved a minimum overpotential of ~85 mV at 10 mA/cm2 and a Tafel slope of 44.2 mV/dec in an acidic electrolyte. These values of the HER were close to those of a benchmark catalyst (platinum on carbon paper electrode). Moreover, the kinetics evaluation at the optimum catalyst ensured the catalyst flows (Volmer-Heyrovsky mechanism), indicating that the adsorption step is rate-determining for the HER. The activity for the oxygen evolution reaction (OER) indicated an overpotential of ~530 mV at 10 mAcm-2 and a Tafel slope of 193.3 mV/dec, which were slightly less or nearly the same as those of the benchmark catalyst. Stability tests using long-term potential cycles confirmed the high durability of the catalyst for both HER and OER. Moreover, the optimal bifunctional catalyst achieved a current density of 10 mAcm-2 at a cell voltage of 1.84 V, which was slightly less than that of the benchmark catalyst (1.98 V). Thus, this research reveals that the present bifunctional, non-noble metallic electrocatalyst is adequate for use as a water-splitting technology in acidic media.

11.
ACS Appl Mater Interfaces ; 14(30): 35027-35039, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35875888

RESUMO

Graphene oxide (GO), single-walled carbon nanohorn (CNHox), and nitrogen-doped CNH (N-CNH) were functionalized with fluorinated poly(ethylene glycol) (F-PEG) and/or with a fluorinated dendrimer (F-DEN) to prepare a series of assembled nanocomposites (GO/F-PEG, CNHox/F-PEG, N-CNH/F-PEG, N-CNH/F-DEN, and N-CNH/F-DEN/F-PEG) that provide effective multisite O2 reservoirs. In all cases, the O2 uptake increased with time and saturated after 10-20 min. When graphitic carbons (GO and CNHox) were coated with F-PEG, the O2 uptake doubled. The O2 loading was slightly higher in N-CNH compared to CNHox. Notably, coating N-CNH with F-DEN or F-PEG, or with both F-DEN and F-PEG, was more effective. The best performance was obtained with the N-CNH/F-DEN/F-PEG nanocomposite. The O2 uptake kinetics and mechanisms were analyzed in terms of the Langmuir adsorption equation based on a multibinding site assumption. This allowed the precise determination of multiple oxygen binding sites, including on the graphitic structure and in the dendrimer, F-DEN, and F-PEG. After an initial rapid, relatively limited release, the amount of O2 trapped in the nanomaterials remained high (>95%). This amount was marginally lower for the functionalized composites, but the oxygen stored was reserved for longer times. Finally, it is shown that these systems can generate singlet oxygen after irradiation by a light-emitting diode, and this production correlates with the amount of O2 loaded. Thus, it was anticipated that the present nanocomposites hierarchically assembled from components with different characters and complementary affinities for oxygen can be useful as O2 reservoirs for singlet oxygen generation to kill bacteria and viruses and to perform photodynamic therapy.

12.
Macromol Biosci ; 22(8): e2200130, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579182

RESUMO

A critical factor in developing an efficient photosensitizer-gold nanoparticle (PS-AuNP) hybrid system with improved plasmonic photosensitization is to allocate a suitable space between AuNPs and PS. Poly(amidoamine) (PAMAM) dendrimer is selected as a spacer between the PS and confeito-like gold nanoparticles (confeito-AuNPs), providing the required distance (≈2.5-22.5 nm) for plasmon-enhanced singlet oxygen generation and heat production upon 638-nm laser irradiation and increase the cellular internalization of the nanoconjugates. The loading of the PS, tetrakis(4-carboxyphenyl) porphyrin (TCPP), and modified zinc phthalocyanine (ZnPc1) onto PAMAM-confeito-AuNPs demonstrate better in vitro cancer cell-killing efficacy, as the combined photothermal-photodynamic therapies (PTT-PDTs) outperforms the single treatment modalities (PTT or PDT alone). These PS-PAMAM-confeito-AuNPs also demonstrate higher phototoxicity than photosensitizers directly conjugated to confeito-AuNPs (TCPP-confeito-AuNPs and ZnPc1-confeito-AuNPs) against all breast cancer cell lines tested (MDA-MB-231, MCF7, and 4T1). In the in vivo studies, TCPP-PAMAM-confeito-AuNPs are biocompatible and exhibit a selective tumor accumulation effect, resulting in higher antitumor efficacy than free TCPP, PAMAM-confeito-AuNPs, and TCPP-confeito-AuNPs. In vitro and in vivo evaluations confirm PAMAM effectiveness in facilitating cellular uptake, plasmon-enhanced singlet oxygen and heat generation. In summary, this study highlights the potential of integrating a PAMAM spacer in enhancing the plasmon effect-based photothermal-photodynamic anticancer treatment efficiency of PS-decorated confeito-AuNPs.


Assuntos
Dendrímeros , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Fotoquimioterapia , Dendrímeros/farmacologia , Ouro/farmacologia , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/metabolismo
13.
J Colloid Interface Sci ; 614: 310-321, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104705

RESUMO

Despite various studies on the preparation of different types and sizes of ZnO, the synthesis of quantum clusters of bare metal oxide has rarely been reported. The research goals of this study were to create clusters/nanoparticles using femtosecond laser irradiation to increase the electrical, optical, and chemical functionalities of ZnO. Femtosecond pulse laser irradiation deposition technology was used here to produce ZnO from a precursor in water (pH = 5.5) and aqueous alkaline solution (pH = 10.2). These products were named ZnO(F5.5) and ZnO(F10.2), respectively. In this procedure, Zn ions react with hydroxyl radicals (OH*) produced by the decomposition of water molecules, and Zn(OH*)2 is dehydrated by femtosecond laser energy to create ZnO. The spherical particle size of ZnO(F5.5) after 1-30 min irradiation was found to be small (1-7 nm) compared to that of ZnO(F10.2) spheres (10-13 nm). Furthermore, ZnO(F5.5) shows a larger band gap (5.3-5.6 eV), a longer electron life time (40.4 ms), and a higher emission intensity (483 a.u.) compared to ZnO(F10.2). For the photodegradation of harmful pollutants, ZnO(F5.5) prepared at 1 min of laser irradiation reduces formaldehyde by 98.5% under UV light irradiation for 15 min. However, ZnO(F10.2) and other larger ZnO particles with various shapes require a longer time for formaldehyde conversion. These results confirm that an ultrasmall ZnO nanoparticle (1 nm in size) can be called a quantum cluster and has better electrical, optical, and photocatalyst characteristics. In particular, efficient photocatalytic reactions may be used to study the ecological and environmental impacts of ZnO quantum cluster.


Assuntos
Nanopartículas , Óxido de Zinco , Catálise , Lasers , Nanopartículas/química , Tamanho da Partícula , Fotólise , Óxido de Zinco/química
14.
Int J Nanomedicine ; 17: 137-150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35046650

RESUMO

PURPOSE: The use of nanocarriers to improve the delivery and efficacy of antimetastatic agents is less explored when compared to cytotoxic agents. This study reports the entrapment of an antimetastatic Signal Transducer and Activator of Transcription 3 (STAT3) dimerization blocker, Stattic (S) into a chitosan-coated-poly(lactic-co-glycolic acid) (C-PLGA) nanocarrier and the improvement on the drug's physicochemical, in vitro and in vivo antimetastatic properties post entrapment. METHODS: In vitro, physicochemical properties of the Stattic-entrapped C-PLGA nanoparticles (S@C-PLGA) and Stattic-entrapped PLGA nanoparticles (S@PLGA, control) in terms of size, zeta potential, polydispersity index, drug loading, entrapment efficiency, Stattic release in different medium and cytotoxicity were firstly evaluated. The in vitro antimigration properties of the nanoparticles on breast cancer cell lines were then studied by Scratch assay and Transwell assay. Study on the in vivo antitumor efficacy and antimetastatic properties of S@C-PLGA compared to Stattic were then performed on 4T1 tumor bearing mice. RESULTS: The S@C-PLGA nanoparticles (141.8 ± 2.3 nm) was hemocompatible and exhibited low Stattic release (12%) in plasma. S@C-PLGA also exhibited enhanced in vitro anti-cell migration potency (by >10-fold in MDA-MB-231 and 5-fold in 4T1 cells) and in vivo tumor growth suppression (by 33.6%) in 4T1 murine metastatic mammary tumor bearing mice when compared to that of the Stattic-treated group. Interestingly, the number of lung and liver metastatic foci was found to reduce by 50% and 56.6%, respectively, and the average size of the lung metastatic foci was reduced by 75.4% in 4T1 tumor-bearing mice treated with S@C-PLGA compared to Stattic-treated group (p < 0.001). CONCLUSION: These findings suggest the usage of C-PLGA nanocarrier to improve the delivery and efficacy of antimetastatic agents, such as Stattic, in cancer therapy.


Assuntos
Quitosana , Nanopartículas , Animais , Óxidos S-Cíclicos , Dimerização , Portadores de Fármacos , Humanos , Camundongos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Fator de Transcrição STAT3
15.
Nanomaterials (Basel) ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36616096

RESUMO

The high performance of perovskite solar cells was produced with the help of an electron transport layer (ETL) and hole transport layer. The film ETL (mesoporous (meso)-TiO2/carbon dot) boosted the efficiency of the perovskite solar cells. A perovskite cell was fabricated by a coating of carbon dot on a meso-TiO2 ETL. The fabricated meso-TiO2/carbon dot-based device has decreased the pin-holes of the perovskite film layer compared to the meso-TiO2-based device, which boosted 3% of the averaged PCE value of the devices. The UV-visible spectroscopy confirmed that the meso-TiO2/carbon dot ETL showed better absorbance, that is, absorbed more incident light than meso-TiO2 ETL to generate higher power conversion efficiency. Coating of carbon dot on meso-TiO2 reduced carrier recombination, and fadeaway of the perovskite film cracks. The X-ray diffraction spectra displayed the removal of the perovskite component after spin-coating of carbon dot to the meso-TiO2 ETL, indicating that the suppression of non-radiative recombination improves the device performance compared to meso-TiO2 ETL. The stability after four weeks on the performance of the device was improved to be 92% by depositing carbon dot on meso-TiO2 ETL compared to the meso-TiO2 ETL-based device (82%). Thus, the high-quality perovskite cell was fabricated by coating carbon dot on a meso-TiO2 ETL, because the electron transport between ETL and perovskite film layer was improved by the injection of electrons from carbon dot.

16.
Carbohydr Polym ; 270: 118366, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364611

RESUMO

Cellulose nanocrystals (CNCs) have advantages as drug delivery carriers because of their biocompatibility and the presence of hydroxyl groups which favor chemical modification and drug binding. The present study describes the development of novel multifunctional rod-like CNCs-based carriers as therapeutic platforms: CNCs were hybridized with folic acid for actively targeting tumor cells, carbon dots (Cdots) for both imaging and photodynamic/photothermal treatments and doxorubicin (DOX) as an anticancer drug. Hybridized carriers displayed excellent drug-loading capacity. Moreover, Cdots-containing hybrids showed fluorescence and photosensitized singlet oxygen generation and photothermal behavior. Carriers exhibited pH-sensitive drug release because of changing interactions with DOX, and this release proved to be effective against in vitro cervical cancer cells, as evidenced by dose-dependent reduced cellular viabilities. Additionally, DOX release was promoted by light irradiation and the photodynamic behavior by reactive oxygen species was confirmed. These results demonstrate the potential of multifunctional CNCs-based carriers as platforms for multimodal photodynamic/photothermal-chemotherapy.


Assuntos
Celulose/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Antineoplásicos/farmacologia , Carbono/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ácido Fólico/química , Ácido Fólico/farmacologia , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio
17.
J Colloid Interface Sci ; 594: 228-244, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33761396

RESUMO

The effect of conductive materials (polyaniline (PA) or carbon dots (Cdots)) added to supercapacitor consisting of nitrogen-doped graphene oxide (NG) and magnetic nanoparticles (magnetite, Fe3O4) was assessed. Small amounts (4 wt%) of Cdots in composites of NG and Fe3O4 nanoparticles have shown better supercapacitor performance than the addition of PA. When the external stimulating force (magnetic field, 8.98 mT) was coupled with the electrochemical system, the specific capacitance was highest (2213 F/g at a scan rate of 5 mV/s) and the cyclic retention was 91% after 5000 cycles for the NG/Cdots/Fe3O4 composite electrode. These reports show that the adequate ternary composite materials effectively enhance the specific capacitance, increase the specific energy density and maintain the durability of supercapacitors under the magnet. The increase in the specific capacitance under the uniform magnetic field was proportional to the 3/5 power of bulk electrolyte concentration, although the power value was different from the theoretical estimation. The complex capacitance was almost double under the magnetic field due to the convection induced by the Lorentz force. It was also confirmed in comparison with the theoretical estimation that the Lorentz effect was responsible for the reduction of the charge transfer resistance, the increase of the relaxation time constant, the facilitation of the ion diffusion, and hence the increase of the double-layer capacitance. The present results will open a new window for the enhancement mechanisms on the capacitance efficiency under the magnetic field.

18.
Anal Chim Acta ; 1152: 338272, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648639

RESUMO

Gold plasmon nanoparticle (AuNP) was applied to the detection and the quantification of pollutant Cr(III) in water. It was synthesized by the chemical reduction of tetrachloroauric(III) acid with sodium citrate as a reducing and capping agent and was modified with 3-mercaptopropanoic acid (3-mpa) to improve the sensing recognition for the metal ion in the colorimetric detection. The 3-mpa-deposited AuNP selectively bound Cr(III) among the other 14 metal cations, resulting in the redshift of the gold plasmon band from 521 nm to 670 nm. The colorimetric quantification examination of the Cr(III) using the plasmon intensity approved the high sensitivity with the low limit of detection (0.34 ppb). Meanwhile, for the electrochemical detection, AuNP was electrochemically deposited on indium tin oxide glass substrate, modified with 3-mpa, attached Cr(III), and subsequently capped with 3-mpa-deposited AuNP. The cathodic current peak at -0.84 V versus the metal ion concentration revealed the linearity at a wide concertation range of 200-5000 ppb. As a result, the proposed colorimetric and electrochemical sensing techniques, which are the simple and facile detectors, can be complementarily employed with a high selectivity, sensitivity and wide analyte concentration range for the quantification of Cr(III) in aqueous solutions.

19.
Carbohydr Polym ; 256: 117536, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483052

RESUMO

Self-standing films of cellulose nanofibril derivatives were prepared via oxidation by the 2,2,6,6-tetramethyl-1-piperidinyloxy radical and amidation with octadecylamine (ODA). The transparency and rigidity of the films decreased and their flexibility increased as the amide/carboxyl ratio increased. The introduction of the ODA also resulted in rising contact angles of water (from 43.5° to 117°) and oleic acid (from 22.5° to 57.1°). Furthermore, the films exhibited unique oil repellency: a drop of hexadecane slipped without tailing on the surface modified by ODA. This phenomenon was observed after moderate modification (water contact angle: 95-114°) and was absent for the films with the lowest and highest extents of modification. Then, the antifingerprint property of the films was examined by means of the powder test, and a reduction in fingerprints on the films was demonstrated. These results suggest the usefulness of developing transparent, self-standing oil-repellent films without perfluorinated compounds for antifingerprint and other antifouling applications.


Assuntos
Celulose Oxidada/química , Óxidos N-Cíclicos/química , Radicais Livres/química , Nanofibras/química , Ácido Oleico/química , Piperidinas/química , Alcanos/química , Módulo de Elasticidade , Flúor/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Oxirredução , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Resistência à Tração , Termogravimetria , Água , Difração de Raios X
20.
ACS Appl Bio Mater ; 4(3): 2591-2600, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014376

RESUMO

Nitric oxide (NO) gas nanocarrier materials were prepared via a hierarchical assembly of poly(amido amine) dendrimers with fluorocarbon binding sites (DEN-F) and fluorinated poly(ethylene glycol) (F-PEG) on nitrogen-doped carbon nanohorns (NCNHs). The loading abilities of NO gas in these nanocarrier materials increased with the nitrogen doping of CNH and hierarchies formed by DEN-F and F-PEG. Especially, the ability of CNH-based nanocomposite materials was better than that of graphene-based materials. The loading of NO gas arose an infrared absorption band at 1387 cm-1 and increased the intensity ratio of D and G bands in Raman spectra, although these phenomena diminished after the degas treatment. The antimicrobial effects on bacteria (Escherichia coli and Staphylococcus aureus) increased depending on the loading amount of NO gas. It was confirmed from these results that NO gas weakly interacts with nitrogen-doped CNH and is trapped in the void volumes of DEN-F and F-PEG hierarchies. Thus, the concentric hierarchy is preferable for slow release of NO gas due to the void volumes in DEN-F, F-PEG, and CNH hierarchical organization. This sustained release of NO gas is advantageous with regards to the potential biomedical gas therapy against bacteria and other parasites.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Dendrímeros/farmacologia , Nanocompostos/química , Óxido Nítrico/farmacologia , Polietilenoglicóis/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/química , Carbono/química , Carbono/farmacologia , Dendrímeros/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Escherichia coli/efeitos dos fármacos , Gases , Halogenação , Teste de Materiais , Testes de Sensibilidade Microbiana , Óxido Nítrico/química , Tamanho da Partícula , Polietilenoglicóis/química , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA