Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Am Chem Soc ; 146(40): 27255-27261, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39348446

RESUMO

Herein, we present a novel methodology for synthesizing metal clusters or secondary building units (SBUs) that are subsequently employed to construct innovative metal-organic frameworks (MOFs) via dynamic covalent chemistry. Our approach entails extraction of SBUs from preformed MOFs through complete disassembly by clip-off chemistry. The initial MOF precursor is designed to incorporate the desired SBU, connected exclusively by cleavable linkers (in this study, with olefinic bonds). Cleavage of all the organic linkers (in this study, via ozonolysis under reductive conditions) liberates the SBUs functionalized with aldehyde groups. Once synthesized, these SBUs can be further reacted with amines in dynamic covalent chemistry to build new, rationally designed MOFs.

2.
J Am Chem Soc ; 146(39): 26603-26608, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39311525

RESUMO

Herein we address the question of whether a supramolecular finite metal-organic structure such as a cage or metal-organic polyhedron (MOP) can be synthesized via controlled cleavage of a three-dimensional (3D) metal-organic structure. To demonstrate this, we report the synthesis of a Cu(II)-based cuboctahedral MOP through orthogonal olefinic bond cleavage of the cavities of a 3D, Cu(II)-based, metal-organic framework (MOF). Additionally, we demonstrate that controlling the ozonolysis conditions used for the cleavage enables Clip-off Chemistry synthesis of two cuboctahedral MOPs that differ by their external functionalization: one in which all 24 external groups represent a mixture of aldehydes, carboxylic acids, acetals and esters, and one in which all are aldehydes.

3.
J Am Chem Soc ; 146(31): 21225-21230, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39058575

RESUMO

Here we report the formation of a 3D NaCl-type binary porous superstructure via coassembly of two colloidal polyhedral metal-organic framework (MOF) particles having complementary sizes, shapes, and charges. We employed a polymeric-attenuated Coulombic self-assembly approach, which also facilitated the coassembly of these MOF particles with spherical polystyrene particles to form 2D binary superstructures. Our results pave the way for using MOFs to create sophisticated superstructures comprising particles of various sizes, shapes, porosities, and chemical compositions.

4.
Adv Mater ; : e2403813, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771625

RESUMO

Infection diseases are a major threat to global public health, with nosocomial infections being of particular concern. In this context, antimicrobial coatings emerge as a promising prophylactic strategy to reduce the transmission of pathogens and control infections. Here, antimicrobial door handle covers to prevent cross-contamination are prepared by incorporating iodine-loaded UiO-66 microparticles into a potentially biodegradable polyurethane polymer (Baycusan eco E 1000). These covers incorporate MOF particles that serve as both storage reservoirs and delivery systems for the biocidal iodine. Under realistic touching conditions, the door handle covers completely inhibit the transmission of Gram-positive bacterial species (Staphylococcus aureus, and Enterococcus faecalis), Gram-negative bacterial species (Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii), and fungi (Candida albicans). The covers remain effective even after undergoing multiple contamination cycles, after being cleaned, and when tinted to improve discretion and usability. Furthermore, as the release of iodine from the door handle covers follow hindered Fickian diffusion, their antimicrobial lifetime is calculated to be as long as approximately two years. Together, these results demonstrate the potential of these antimicrobial door handle covers to prevent cross-contamination, and underline the efficacy of integrating MOFs into innovative technologies.

5.
Inorg Chem ; 63(12): 5552-5558, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38484385

RESUMO

Inducing, understanding, and controlling the flexibility in metal-organic frameworks (MOFs) are of utmost interest due to the potential applications of dynamic materials in gas-related technologies. Herein, we report the synthesis of two isostructural two-dimensional (2D) interweaving zinc(II) MOFs, TMU-27 [Zn(bpipa)(bdc)] and TMU-27-NH2 [Zn(bpipa)(NH2-bdc)], based on N,N'-bis-4-pyridyl-isophthalamide (bpipa) and 1,4-benzenedicarboxylate (bdc) or 2-amino-1,4-benzenedicarboxylate (NH2-bdc), respectively. These frameworks differ only by the substitution at the meta-position of their respective bdc groups: an H atom in TMU-27 vs an NH2 group in TMU-27-NH2. This difference strongly influences their respective responses to external stimuli, since we observed that the structure of TMU-27 changed due to desolvation and adsorption, whereas TMU-27-NH2 remained rigid. Using single-crystal X-ray diffraction and CO2-sorption measurements, we discovered that upon CO2 sorption, TMU-27 undergoes a transition from a closed-pore phase to an open-pore phase. In contrast, we attributed the rigidification in TMU-27-NH2 to intermolecular hydrogen bonding between interweaving layers, namely, between the H atoms from the bdc-amino groups and the O atoms from the bpipa-amide groups within these layers. Additionally, by using scanning electron microscopy to monitor the CO2 adsorption and desorption in TMU-27, we were able to establish a correlation between the crystal size of this MOF and its transformation pressure.

6.
J Am Chem Soc ; 146(8): 5186-5194, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38311922

RESUMO

Isomer-pure functionalized fullerenes are required to boost the development of fullerene chemistry in any field, but their multiple functionalization renders a mixture of regioisomers that are very difficult to purify by chromatography. For the specific case of C70, its nonspherical geometry makes its regioselective functionalization more challenging than that of spherical C60. In this work, the supramolecular mask approach is applied for the first time to C70, which is encapsulated in two different nanocapsules to achieve the Bingel bis-cyclopropanation at α-bonds of opposite poles. Based on the tetragonal prismatic geometry imposed by the smaller supramolecular mask tested, the obtained major bis-adduct is completely reversed (major 5 o'clock) compared to bare C70 functionalization (major 2 o'clock). Moreover, by further restricting the accessibility of C70 using a three-shell Matryoshka mask and dibenzyl-bromomalonate, a single regiospecific 2 o'clock bis-isomer is obtained, owing to the perfect complementarity of the mask and the addend steric properties. The outcome of the reactions is fully explained at the molecular level by means of a thorough molecular dynamics (MD) study of the accessibility of the α-bonds to produce the different bis-adducts.

7.
Chem Sci ; 14(45): 12984-12994, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023514

RESUMO

Reticular materials constructed from regular molecular building blocks (MBBs) have been widely explored in the past three decades. Recently, there has been increasing interest in the assembly of novel, intricate materials using less-symmetric ligands; however, current methods for predicting structure are not amenable to this increased complexity. To address this gap, we propose herein a generalised version of the net-clipping approach for anticipating the topology of metal-organic frameworks (MOFs) assembled from organic linkers and different polygonal and polyhedral MBBs. It relies on the generation of less-symmetric nets with less-connected linkers, via the rational deconstruction of more-symmetric and more-connected linkers in edge-transitive nets. We applied our top-down strategy to edge-transitive nets containing 4-c tetrahedral, 6-c hexagonal, 8-c cubic or 12-c hexagonal prism linkers, envisaging the formation of 102 derived and 46 clipped nets. Among these, we report 33 new derived nets (icn7-icn39) and 6 new clipped nets (icn1-icn6). Importantly, the feasibility of using net-clipping to anticipate clipped nets is supported by literature examples and new experimental additions. Finally, we suggest and illustrate that net-clipping can be extended to less-regular, non-edge transitive nets as well as to covalent-organic frameworks (COFs), thus opening new avenues for the rational design of new reticular materials exhibiting unprecedented topologies.

8.
Adv Mater ; 35(47): e2306648, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37840431

RESUMO

Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As  detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.

9.
Angew Chem Int Ed Engl ; 62(48): e202310354, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37671919

RESUMO

Clip-off Chemistry is a synthetic strategy that our group previously developed to obtain new molecules and materials through selective cleavage of bonds. Herein, we report recent work to expand Clip-off Chemistry by introducing into it a retrosynthetic analysis step that, based on virtual extension of the products through cleavable bonds, enables one to define the required precursor materials. As proof-of-concept, we have validated our new approach by synthesising and characterising four aldehyde-functionalised Rh(II)-based complexes: a homoleptic cluster; a cis-disubstituted paddlewheel cluster; a macrocycle; and a crown.

10.
J Am Chem Soc ; 145(37): 20163-20168, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37672353

RESUMO

Self-assembly of colloidal particles into ordered superstructures is an important strategy to discover new materials, such as catalysts, plasmonic sensing materials, storage systems, and photonic crystals (PhCs). Here we show that porous covalent organic frameworks (COFs) can be used as colloidal building particles to fabricate porous PhCs with an underlying face-centered cubic (fcc) arrangement. We demonstrate that the Bragg reflection of these can be tuned by controlling the size of the COF particles and that species can be adsorbed within the pores of the COF particles, which in turn alters the Bragg reflection. Given the vast number of existing COFs, with their rich properties and broad modularity, we expect that our discovery will enable the development of colloidal PhCs with unprecedented functionality.

11.
J Am Chem Soc ; 145(31): 17398-17405, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494639

RESUMO

Isoreticular chemistry, in which the organic or inorganic moieties of reticular materials can be replaced without destroying their underlying nets, is a key concept for synthesizing new porous molecular materials and for tuning or functionalization of their pores. Here, we report that the rational cleavage of covalent bonds in a metal-organic framework (MOF) can trigger their isoreticular contraction, without the need for any additional organic linkers. We began by synthesizing two novel MOFs based on the MIL-142 family, (In)BCN-20B and (Sc)BCN-20C, which include cleavable as well as noncleavable organic linkers. Next, we selectively and quantitatively broke their cleavable linkers, demonstrating that various dynamic chemical and structural processes occur within these structures to drive the formation of isoreticular contracted MOFs. Thus, the contraction involves breaking of a covalent bond, subsequent breaking of a coordination bond, and finally, formation of a new coordination bond supported by structural behavior. Remarkably, given that the single-crystal character of the parent MOF is retained throughout the entire transformation, we were able to monitor the contraction by single-crystal X-ray diffraction.

12.
Chem Commun (Camb) ; 59(50): 7803-7806, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37272083

RESUMO

Metal-organic frameworks (MOFs) based on high-connected nets are generally very attractive due to their combined robustness and porosity. Here, we describe the synthesis of BCN-348, a new high-connected Zr-MOF built from an 8-connected (8-c) cubic Zr-oxocluster and an 8-c organic linker. BCN-348 contains a minimal edge-transitive 3,4,8-c eps net, and combines mesoporosity with thermal and hydrolytic stability. Encouraging results from preliminary studies on its use as a catalyst for hydrolysis of a nerve-agent simulant suggest its potential as an agent for detoxification of chemical weapons and other pernicious compounds.

13.
Dalton Trans ; 52(16): 5234-5242, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36974616

RESUMO

Metal-organic frameworks (MOFs) possess high CO2 adsorption properties and are considered to be a promising candidate for the electrochemical carbon dioxide reduction reaction (eCO2RR). However, their insufficient selectivity and current density constrain their further exploration in the eCO2RR. In this work, by introducing a very small proportion of 2,5-dihydroxyterephthalic acid (DOBDC) into ZIF-8, a surface modified ZIF-8-5% catalyst was synthesized by a post-modification method, exhibiting enhanced selectivity (from 56% to 79%) and current density (from -4 mA cm-2 to -10 mA m-2) compared to ZIF-8. Density functional theory (DFT) calculations further demonstrate that the boosted eCO2RR performance on ZIF-8-5% could be attributed to the improved formation of the *COOH intermediate stemming from successful DOBDC surface modification. This work opens a new path for improving the catalytic properties of MOFs via their surface modification.

14.
Adv Mater ; 35(23): e2209104, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919615

RESUMO

Space cooling and heating, ventilation, and air conditioning (HVAC) accounts for roughly 10% of global electricity use and are responsible for ca. 1.13 gigatonnes of CO2 emissions annually. Adsorbent-based HVAC technologies have long been touted as an energy-efficient alternative to traditional refrigeration systems. However, thus far, no suitable adsorbents have been developed which overcome the drawbacks associated with traditional sorbent materials such as silica gels and zeolites. Metal-organic frameworks (MOFs) offer order-of-magnitude improvements in water adsorption and regeneration energy requirements. However, the deployment of MOFs in HVAC applications has been hampered by issues related to MOF powder processing. Herein, three high-density, shaped, monolithic MOFs (UiO-66, UiO-66-NH2 , and Zr-fumarate) with exceptional volumetric gas/vapor uptake are developed-solving previous issues in MOF-HVAC deployment. The monolithic structures across the mesoporous range are visualized using small-angle X-ray scattering and lattice-gas models, giving accurate predictions of adsorption characteristics of the monolithic materials. It is also demonstrated that a fragile MOF such as Zr-fumarate can be synthesized in monolithic form with a bulk density of 0.76 gcm-3 without losing any adsorption performance, having a coefficient of performance (COP) of 0.71 with a low regeneration temperature (≤ 100 °C).

15.
Chem Soc Rev ; 52(7): 2528-2543, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930224

RESUMO

Self-assembly of colloidal particles into ordered superstructures enables the development of novel advanced materials for diverse applications such as photonics, electronics, sensing, energy conversion, energy storage, diagnosis, drug or gene delivery, and catalysis. Recently, polyhedral metal-organic framework (MOF) particles have been proposed as promising colloidal particles to form ordered superstructures, based on their colloidal stability, size-tunability, rich polyhedral shapes, porosity and multifunctionality. In this review, we present a comprehensive overview of strategies for the self-assembly of colloidal MOF particles into ordered superstructures of different dimensionalities, highlighting some of their properties and applications, and sharing thoughts on the self-assembly of MOF particles.

16.
Chem Commun (Camb) ; 59(23): 3423-3426, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36853262

RESUMO

Increasing the chemical complexity of metal-organic cages (MOCs) or polyhedra (MOPs) demands control over the simultaneous organization of diverse organic linkers and metal ions into discrete caged structures. Herein, we show that a pre-assembled complex of the archetypical cuboctahedral MOP can be used as a template to replicate such caged structure, one having a "triblock Janus-type" configuration that is both heterometallic and heteroleptic.

17.
Chem Commun (Camb) ; 58(75): 10480-10483, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35880835

RESUMO

We have synthesised and characterised the two possible isomers of heteroleptic trigonal antiprismatic M12L6L'6 MOPs by screening reactions of rhodium acetate with different pairs of complementary dicarboxylate linkers. The resulting 12 new MOPs (eight of isomer A + four of isomer B) are microporous in the solid state, exhibiting Brunauer-Emmett-Teller (BET) surface areas as high as 770 m2 g-1.

18.
Angew Chem Int Ed Engl ; 61(16): e202117455, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35129874

RESUMO

Supraparticles are spherical colloidal crystals prepared by confined self-assembly processes. A particularly appealing property of these microscale structures is the structural color arising from interference of light with their building blocks. Here, we assemble supraparticles with high structural order that exhibit coloration from uniform, polyhedral metal-organic framework (MOF) particles. We analyse the structural coloration as a function of the size of these anisotropic building blocks and their internal structure. We attribute the angle-dependent coloration of the MOF supraparticles to the presence of ordered, onion-like layers at the outermost regions. Surprisingly, even though different shapes of the MOF particles have different propensities to form these onion layers, all supraparticle dispersions show well-visible macroscopic coloration, indicating that local ordering is sufficient to generate interference effects.

19.
Angew Chem Int Ed Engl ; 61(4): e202111228, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34739177

RESUMO

Bond breaking is an essential process in chemical transformations and the ability of researchers to strategically dictate which bonds in a given system will be broken translates to greater synthetic control. Here, we report extending the concept of selective bond breaking to reticular materials in a new synthetic approach that we call Clip-off Chemistry. We show that bond-breaking in these structures can be controlled at the molecular level; is periodic, quantitative, and selective; is effective in reactions performed in either solid or liquid phases; and can occur in a single-crystal-to-single-crystal fashion involving the entire bulk precursor sample. We validate Clip-off Chemistry by synthesizing two topologically distinct 3D metal-organic frameworks (MOFs) from two reported 3D MOFs, and a metal-organic macrocycle from metal-organic polyhedra (MOP). Clip-off Chemistry opens the door to the programmed disassembly of reticular materials and thus to the design and synthesis of new molecules and materials.

20.
ACS Catal ; 11(19): 12344-12354, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34900388

RESUMO

The functionalization of an imine-based layered covalent organic framework (COF), containing phenanthroline units as ligands, has allowed the obtention of a heterobimetallated material. Photoactive Ir and Ni fragments were immobilized within the porous structure of the COF, enabling heterogeneous light-mediated Csp3-Csp2 cross-couplings. As radical precursors, potassium benzyl- and alkoxy-trifluoroborates, organic silicates, and proline derivatives were employed, which brings out the good versatility of Ir,Ni@Phen-COF. Moreover, in all the studied cases, an enhanced activity and stability have been observed in comparison with analogous homogenous systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA