Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
EMBO J ; 43(9): 1843-1869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565948

RESUMO

The RNA-silencing effector ARGONAUTE10 influences cell fate in plant shoot and floral meristems. ARGONAUTE10 also accumulates in the root apical meristem (RAM), yet its function(s) therein remain elusive. Here, we show that ARGONAUTE10 is expressed in the root cell initials where it controls overall RAM activity and length. ARGONAUTE10 is also expressed in the stele, where post-transcriptional regulation confines it to the root tip's pro-vascular region. There, variations in ARGONAUTE10 levels modulate metaxylem-vs-protoxylem specification. Both ARGONAUTE10 functions entail its selective, high-affinity binding to mobile miR165/166 transcribed in the neighboring endodermis. ARGONAUTE10-bound miR165/166 is degraded, likely via SMALL-RNA-DEGRADING-NUCLEASES1/2, thus reducing miR165/166 ability to silence, via ARGONAUTE1, the transcripts of cell fate-influencing transcription factors. These include PHABULOSA (PHB), which controls meristem activity in the initials and xylem differentiation in the pro-vasculature. During early germination, PHB transcription increases while dynamic, spatially-restricted transcriptional and post-transcriptional mechanisms reduce and confine ARGONAUTE10 accumulation to the provascular cells surrounding the newly-forming xylem axis. Adequate miR165/166 concentrations are thereby channeled along the ARGONAUTE10-deficient yet ARGONAUTE1-proficient axis. Consequently, inversely-correlated miR165/166 and PHB gradients form preferentially along the axis despite ubiquitous PHB transcription and widespread miR165/166 delivery inside the whole vascular cylinder.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Regulação da Expressão Gênica de Plantas , Meristema , MicroRNAs , Raízes de Plantas , Xilema , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , MicroRNAs/metabolismo , MicroRNAs/genética , Meristema/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Xilema/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética
2.
Plant J ; 54(2): 236-48, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18182022

RESUMO

The conditional flu mutant of Arabidopsis accumulates excess amounts of protochlorophyllide within plastid membranes in the dark and generates singlet oxygen upon light exposure. By varying the length of the dark period, the level of the photosensitizer protochlorophyllide may be modulated, and conditions have been established that either endorse the cytotoxicity of (1)O(2) or reveal its signaling role. Two criteria have been used to distinguish between these two modes of activity of (1)O(2): the impact of the EXECUTER1 mutation and the prevalence of either non-enzymatic or enzymatic lipid peroxidation. During illumination of etiolated flu seedlings, toxic effects of (1)O(2) prevail and non-enzymatic lipid peroxidation proceeds rapidly. In contrast, in light-grown flu plants that were subjected to an 8 h dark/light shift, lipid peroxidation occurred almost exclusively enzymatically. The resulting oxidation product, 13-hydroperoxy octadecatrienoic acid (13-HPOT), serves as a substrate for synthesis of 12-oxo phytodienoic acid (OPDA) and jasmonic acid (JA), both of which are known to control various metabolic and developmental processes in plants. Inactivation of the EXECUTER1 protein abrogates not only (1)O(2)-mediated cell death and growth inhibition of flu plants, but also enzymatic lipid peroxidation. However, inactivation of jasmonate biosynthesis in the aos/flu double mutant does not affect (1)O(2)-mediated growth inhibition and cell death. Hence, JA and OPDA do not act as second messengers during (1)O(2) signaling, but form an integral part of a stress-related signaling cascade activated by (1)O(2) that encompasses several signaling pathways known to be activated by abiotic and biotic stressors.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Graxos Insaturados/metabolismo , Peroxidação de Lipídeos , Oxigênio Singlete , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Morte Celular , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oxirredução , Estresse Oxidativo , Oxilipinas/metabolismo , Fatores de Tempo
3.
Plant J ; 47(3): 445-56, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16790029

RESUMO

Upon a dark/light shift the conditional flu mutant of Arabidopsis starts to generate singlet oxygen (1O2) that is restricted to the plastid compartment. Distinct sets of genes are activated that are different from those induced by hydrogen peroxide/superoxide. One of the genes that is rapidly upregulated is EDS1 (enhanced disease susceptibility). The EDS1 protein has been shown to be required for the resistance to biotrophic pathogens and the accumulation of salicylic acid (SA) that enhances the defenses of a plant by inducing the synthesis of pathogen-related (PR) proteins. Because of the similarity of its N-terminal portion to the catalytic site of lipases, EDS1 has also been implicated with the release of polyunsaturated fatty acids and the subsequent formation of various oxylipins. The release of singlet oxygen in the flu mutant triggers a drastic increase in the concentration of free SA and activates the expression of PR1 and PR5 genes. These changes depend on the activity of EDS1 and are suppressed in flu/eds1 double mutants. Soon after the beginning of singlet oxygen production, the synthesis of oxylipins such as jasmonic acid (JA) and 12-oxophytodienoic acid (OPDA) also start and plants stop growing and induce a cell-death response. The inactivation of EDS1 does not affect oxylipin synthesis, growth inhibition and the initiation of cell death, but it does allow plants to recover much faster from singlet oxygen-mediated growth inhibition and it also suppresses the spread of necrotic lesions in leaves. Hence, singlet oxygen activates a complex stress-response program with EDS1 playing a key role in initiating and modulating several steps of it. This program includes not only responses to oxidative stress, but also responses known to be activated during plant-pathogen interactions and wounding.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/fisiologia , Oxigênio Singlete/metabolismo , Apoptose , Arabidopsis/anatomia & histologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Oxilipinas , RNA Mensageiro/metabolismo , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA