Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(6): e11538, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38859887

RESUMO

Understanding the factors that drive spatial synchrony among populations or species is important for management and recovery of populations. The range-wide declines in Atlantic salmon (Salmo salar) populations may be the result of broad-scale changes in the marine environment. Salmon undergo rapid growth in the ocean; therefore changing marine conditions may affect body size and fecundity estimates used to evaluate whether stock reference points are met. Using a dataset that spanned five decades, 172,268 individuals, and 19 rivers throughout Eastern Canada, we investigated the occurrence of spatial synchrony in changes in the body size of returning wild adult Atlantic salmon. Body size was then related to conditions in the marine environment (i.e., climate indices, thermal habitat availability, food availability, density-dependence, and fisheries exploitation rates) that may act on all populations during the ocean feeding phase of their life cycle. Body size increased during the 1980s and 1990s for salmon that returned to rivers after one (1SW) or two winters at sea (2SW); however, significant changes were only observed for 1SW and/or 2SW in some mid-latitude and northern rivers (10/13 rivers with 10 of more years of data during these decades) and not in southern rivers (0/2), suggesting weak spatial synchrony across Eastern Canada. For 1SW salmon in nine rivers, body size was longer when fisheries exploitation rates were lower. For 2SW salmon, body size was longer when suitable thermal habitat was more abundant (significant for 3/8 rivers) and the Atlantic Multidecadal Oscillation was higher (i.e., warmer sea surface temperatures; significant for 4/8 rivers). Overall, the weak spatial synchrony and variable effects of covariates on body size across rivers suggest that changes in Atlantic salmon body size may not be solely driven by shared conditions in the marine environment. Regardless, body size changes may have consequences for population management and recovery through the relationship between size and fecundity.

2.
Ecology ; 104(5): e4036, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944538

RESUMO

Climate change models often assume similar responses to temperatures across the range of a species, but local adaptation or phenotypic plasticity can lead plants and animals to respond differently to temperature in different parts of their range. To date, there have been few tests of this assumption at the scale of continents, so it is unclear if this is a large-scale problem. Here, we examined the assumption that insect taxa show similar responses to temperature at 96 sites in grassy habitats across North America. We sampled insects with Malaise traps during 2019-2021 (N = 1041 samples) and examined the biomass of insects in relation to temperature and time of season. Our samples mostly contained Diptera (33%), Lepidoptera (19%), Hymenoptera (18%), and Coleoptera (10%). We found strong regional differences in the phenology of insects and their response to temperature, even within the same taxonomic group, habitat type, and time of season. For example, the biomass of nematoceran flies increased across the season in the central part of the continent, but it only showed a small increase in the Northeast and a seasonal decline in the Southeast and West. At a smaller scale, insect biomass at different traps operating on the same days was correlated up to ~75 km apart. Large-scale geographic and phenological variation in insect biomass and abundance has not been studied well, and it is a major source of controversy in previous analyses of insect declines that have aggregated studies from different locations and time periods. Our study illustrates that large-scale predictions about changes in insect populations, and their causes, will need to incorporate regional and taxonomic differences in the response to temperature.


Assuntos
Insetos , Lepidópteros , Animais , Temperatura , Insetos/fisiologia , Ecossistema , Aclimatação
3.
BMC Vet Res ; 11: 129, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26054857

RESUMO

BACKGROUND: The Loggerhead Shrike, Eastern subspecies (Lanius ludovicianus ssp.) (LOSH) is a predatory songbird native to Eastern North America. It is estimated that there are fewer than 55 breeding pairs of this subspecies in North America. Captive breeding plays a critical role in preventing the extirpation of this subspecies from its Canadian range. Unfortunately, high numbers of unexplained deaths among young birds in the captive breeding population threatened the success of this program. This paper describes fledgling mortality in the captive breeding population, and seeks to identify factors associated with fledgling survival and, ultimately, to identify steps to mitigate fledgling mortality. RESULTS: Over the study period (2006-2011) at two breeding sites, 696 LOSH were fledged. Among these, 68 % (n = 474) were released, 10 % (n = 69) were retained in the captive breeding population, and 22 % (n = 155) died. Fledgling survival declined from 99 % in 2006 to 44 % in 2011. The odds of survival were significantly lower for fledglings that were part of a second clutch. As the number of fledglings in a clutch increased, the odds of surviving increased significantly. As the breeding female aged from one to four years of age, there was a marked increase in the odds of a fledgling surviving, which then subsequently declined as females aged further. CONCLUSIONS: Based on our analyses, clutch number (first or second), number of fledglings in the brood, and age of breeding females were significant predictors of fledgling survival. Long-term breeding management decisions will have to balance the need to increase the number of individuals and breeding pairs in the wild by releasing large numbers of young, against the need to maintain a genetically viable captive population, until the wild population is large enough to be self-sustaining.


Assuntos
Criação de Animais Domésticos/métodos , Cruzamento , Passeriformes/fisiologia , Animais , Canadá , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Feminino , Masculino , Passeriformes/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA