Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2403557121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38809709

RESUMO

The Asian water tower (AWT) serves as the source of 10 major Asian river systems and supports the lives of ~2 billion people. Obtaining reliable precipitation data over the AWT is a prerequisite for understanding the water cycle within this pivotal region. Here, we quantitatively reveal that the "observed" precipitation over the AWT is considerably underestimated in view of observational evidence from three water cycle components, namely, evapotranspiration, runoff, and accumulated snow. We found that three paradoxes appear if the so-called observed precipitation is corrected, namely, actual evapotranspiration exceeding precipitation, unrealistically high runoff coefficients, and accumulated snow water equivalent exceeding contemporaneous precipitation. We then explain the cause of precipitation underestimation from instrumental error caused by wind-induced gauge undercatch and the representativeness error caused by sparse-uneven gauge density and the complexity of local surface conditions. These findings require us to rethink previous results concerning the water cycle, prompting the study to discuss potential solutions.

2.
Hydrol Process ; 35(5): e14189, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34248274

RESUMO

The Langtang catchment is a high mountain, third order catchment in the Gandaki basin in the Central Himalaya (28.2°N, 85.5°E), that eventually drains into the Ganges. The catchment spans an elevation range from 1400 to 7234 m a.s.l. and approximately one quarter of the area is glacierized. Numerous research projects have been conducted in the valley during the last four decades, with a strong focus on the cryospheric components of the catchment water balance. Since 2012 multiple weather stations and discharge stations provide measurements of atmospheric and hydrologic variables. Full weather stations are used to monitor at an hourly resolution all four radiation components (incoming and outgoing shortwave and longwave radiation; SWin/out and LWin/out), air temperature, humidity, wind speed and direction, and precipitation, and cover an elevational range of 3862-5330 m a.s.l. Air temperature and precipitation are monitored along elevation gradients for investigations of the spatial variability of the high mountain meteorology. Dedicated point-scale observations of snow cover, depth and water equivalent as well as ice loss have been carried out over multiple years and complement the observations of the water cycle. All data presented is openly available in a database and will be updated annually.

3.
Nature ; 593(7857): 74-82, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953415

RESUMO

The land ice contribution to global mean sea level rise has not yet been predicted1 using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models2-8, but primarily used previous-generation scenarios9 and climate models10, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios11,12 using statistical emulation of the ice sheet and glacier models. We find that limiting global warming to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.

4.
Sci Total Environ ; 786: 147142, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33965826

RESUMO

Siloed-approaches may fuel the misguided development of hydropower and subsequent target-setting under the sustainable development goals (SDGs). While hydropower development in the Indus basin is vital to ensure energy security (SDG7), it needs to be balanced with water use for fulfilling food (SDG2) and water (SDG6) security. Existing methods to estimate hydropower potential generally focus on: only one class of potential, a methodological advance for either of hydropower siting, sizing, or costing of one site, or the ranking of a portfolio of projects. A majority of them fall short in addressing sustainability. Hence, we develop a systematic framework for the basin-scale assessment of the sustainable hydropower potential by integrating considerations of the water-energy-food nexus, disaster risk, climate change, environmental protection, and socio-economic preferences. Considering the case of the upper Indus, the framework is developed by combining advances in literature, insights from local hydropower practitioners and over 30 datasets to represent real-life challenges to sustainable hydropower development, while distinguishing between small and large plants for two run-of-river plant configurations. The framework first addresses theoretical potential and successively constrains this further by stepwise inclusion of technical, economical, and sustainability criteria to obtain the sustainable exploitable hydropower potential. We conclude that sustainable hydropower potential in complex basins such as the Indus goes far beyond the hydrological boundary conditions. Our framework enables the careful inclusion of factors beyond the status-quo technological and economic criterions to guide policymakers in hydropower development decisions in the Indus and beyond. Future work will implement the framework to quantify the different hydropower potential classes and explore adaptation pathways to balance SDG7 with the other interlinked SDGs in the Indus.

5.
Int J Climatol ; 40(3): 1738-1754, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32201456

RESUMO

Glaciers are of key importance to freshwater supplies in the Himalayan region. Their growth or decline is among other factors determined by an interaction of 2-m air temperature (TAS) and precipitation rate (PR) and thereof derived positive degree days (PDD) and snow and ice accumulation (SAC). To investigate determining factors in climate projections, we use a model ensemble consisting of 36 CMIP5 general circulation models (GCMs) and 13 regional climate models (RCMs) of two Asian CORDEX domains for two different representative concentration pathways (RCP4.5 and RCP8.5). First, we downsize the ensemble in respect to the models' ability to correctly reproduce dominant circulation patterns (i.e., the Indian summer monsoon [ISM] and western disturbances [WDs]) as well as elevation-dependent trend signals in winter. Within this evaluation, a newly produced data set for the Indus, Ganges and Brahmaputra catchments is used as observational data. The reanalyses WFDEI, ERA-Interim, NCEP/NCAR and JRA-55 are used to further account for observational uncertainty. In a next step, remaining TAS and PR data are bias corrected applying a new bias adjustment method, scale distribution mapping, and subsequently PDD and SAC computed. Finally, we identify and quantify projected climate change effects. Until the end of the century, the ensemble indicates a rise of PDD, especially during summer and for lower altitudes. Also TAS is rising, though the highest increases are shown for higher altitudes and between December and April (DJFMA). PRs connected to the ISM are projected to robustly increase, while signals for PR changes during DJFMA show a higher level of uncertainty and spatial heterogeneity. However, a robust decline in solid precipitation is projected over our research domain, with the exception of a small area in the high mountain Indus catchment where no clear signal emerges.

6.
Int J Climatol ; 40(2): 942-956, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32103854

RESUMO

Melting snow and glacier ice in the Himalaya forms an important source of water for people downstream. Incoming longwave radiation (LWin) is an important energy source for melt, but there are only few measurements of LWin at high elevation. For the modelling of snow and glacier melt, the LWin is therefore often represented by parameterizations that were originally developed for lower elevation environments. With LWin measurements at eight stations in three catchments in the Himalaya, with elevations between 3,980 and 6,352 m.a.s.l., we test existing LWin parameterizations. We find that these parameterizations generally underestimate the LWin, especially in wet (monsoon) conditions, where clouds are abundant and locally formed. We present a new parameterization based only on near-surface temperature and relative humidity, both of which are easy and inexpensive to measure accurately. The new parameterization performs better than the parameterizations available in literature, in some cases halving the root-mean-squared error. The new parameterization is especially improving existing parameterizations in cloudy conditions. We also show that the choice of longwave parameterization strongly affects melt calculations of snow and ice.

7.
Nat Geosci ; 13(1): 8-16, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31915463

RESUMO

Global-scale glacier shrinkage is one of the most prominent signs of ongoing climatic change. However, important differences in glacier response exist at the regional scale, and evidence has accumulated that one particular region stands out: the Karakoram. In the past two decades, the region has shown balanced to slightly positive glacier budgets, an increase in glacier ice-flow speeds, stable to partially advancing glacier termini, and widespread glacier surge activity. This is in stark contrast to the rest of High Mountain Asia, where glacier retreat and slowdown dominate, and glacier surging is largely absent. Termed the Karakoram Anomaly, recent observations show that the anomalous glacier behaviour partially extends to the nearby Western Kun Lun and Pamir. Several complementary explanations have now been presented for explaining the Anomaly's deeper causes, but the understanding is far from being complete. Whether the Anomaly will continue to exist in the coming decades remains unclear, but its long-term persistence seems unlikely in light of the considerable warming anticipated by current projections of future climate.

8.
Sci Bull (Beijing) ; 65(5): 410-418, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659232

RESUMO

The riverine sediment flux (SF) is an essential pathway for nutrients and pollutants delivery and considered as an important indicator of land degradation and environment changes. With growing interest in environmental changes over the Tibetan Plateau (TP), this work investigated the variation of the SF in response to climate change in the headwater of the Yangtze River over the past 30 years. Annual time series of hydro-meteorological variables during 1986-2014 indicate significantly increasing trends of air temperature, precipitation, ground temperature, river discharge, suspended sediment concentration and SF. Stepwise changes were identified with significantly higher values of the above variables in 1998-2014 compared with 1986-1997, which could potentially be attributed to the strong 1997 El Niño event. Double-mass plots indicated that both meltwater and rainfall contributed to the increased river discharge while the increased SF mostly resulted from enhanced erosive power and transport capacities of the increased discharge. However, it was buffered by a decrease in sediment source due to the shift of maximum monthly rainfall from June/July to July/August during which period a denser vegetation cover prevents soil erosion. Partial least squares structural equation modeling analysis confirmed the dominance of warming on the increase of discharge amplified by increased precipitation. It also confirmed that the increased precipitation drives the increase in suspended sediment concentration. Both processes conspire and equally contribute to the stepwise increase of SF. This study provides important insights into the controlling processes for recent SF changes and gives guidance for water and soil conservation on the TP.

9.
Nat Commun ; 10(1): 4629, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604957

RESUMO

Accurate snow depth observations are critical to assess water resources. More than a billion people rely on water from snow, most of which originates in the Northern Hemisphere mountain ranges. Yet, remote sensing observations of mountain snow depth are still lacking at the large scale. Here, we show the ability of Sentinel-1 to map snow depth in the Northern Hemisphere mountains at 1 km² resolution using an empirical change detection approach. An evaluation with measurements from ~4000 sites and reanalysis data demonstrates that the Sentinel-1 retrievals capture the spatial variability between and within mountain ranges, as well as their inter-annual differences. This is showcased with the contrasting snow depths between 2017 and 2018 in the US Sierra Nevada and European Alps. With Sentinel-1 continuity ensured until 2030 and likely beyond, these findings lay a foundation for quantifying the long-term vulnerability of mountain snow-water resources to climate change.

10.
Sci Rep ; 9(1): 5264, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918290

RESUMO

Temperature index (TI) models are convenient for modelling glacier ablation since they require only a few input variables and rely on simple empirical relations. The approach is generally assumed to be reliable at lower elevations (below 3500 m above sea level, a.s.l) where air temperature (Ta) relates well to the energy inputs driving melt. We question this approach in High Mountain Asia (HMA). We study in-situ meteorological drivers of glacial ablation at two sites in central Nepal, between 2013 and 2017, using data from six automatic weather stations (AWS). During the monsoon, surface melt dominates ablation processes at lower elevations (between 4950 and 5380 m a.s.l.). As net shortwave radiation (SWnet) is the main energy input at the glacier surface, albedo (α) and cloudiness play key roles while being highly variable in space and time. For these cases only, ablation can be calculated with a TI model, or with an Enhanced TI (ETI) model that includes a shortwave radiation (SW) scheme and site specific ablation factors. In the ablation zone during other seasons and during all seasons in the accumulation zone, sublimation and other wind-driven ablation processes also contribute to mass loss, and remain unresolved with TI or ETI methods.

11.
Geophys Res Lett ; 46(23): 14145-14152, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-32025066

RESUMO

Glaciers around the world are shrinking, yet in a region in northwestern High Mountain Asia (HMA), glaciers show growth. A proposed explanation for this anomalous behavior is related to the variability of the "Western Tibetan Vortex" (WTV), which correlates well with near-surface temperatures in northwestern HMA. Using analytical formulations and ERA5 reanalysis data, we show that the WTV is the change of wind field resulting from changes in near-surface temperature gradients in geostrophic flow and that it is not unique to northwestern HMA. Instead, we argue that net radiation is likely the main driver of near-surface temperatures in Western HMA in summer and autumn. The decreasing strength of the WTV during summer in the twentieth century is thus likely the result of decreasing net radiation. We do argue that the WTV is a useful concept that could yield insights in other regions as well.

12.
Geophys Res Lett ; 45(4): 2047-2054, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29937602

RESUMO

Many glaciers in the northwest of High Mountain Asia (HMA) show an almost zero or positive mass balance, despite the global trend of melting glaciers. This phenomenon is often referred to as the "Karakoram anomaly," although strongest positive mass balances can be found in the Kunlun Shan mountain range, northeast of the Karakoram. Using a regional climate model, in combination with a moisture-tracking model, we show that the increase in irrigation intensity in the lowlands surrounding HMA, particularly in the Tarim basin, can locally counter the effects of global warming on glaciers in Kunlun Shan, and parts of Pamir and northern Tibet, through an increase in summer snowfall and decrease in net radiance. Irrigation can thus affect the regional climate in a way that favors glacier growth, and future projections of glacier melt, which may impact millions of inhabitants surrounding HMA, will need to take into account predicted changes in irrigation intensity.

13.
PLoS One ; 12(12): e0190224, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29287098

RESUMO

Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush-Himalayan region.


Assuntos
Clima , Ecossistema , Rios , Índia , Nepal
14.
Proc Natl Acad Sci U S A ; 113(33): 9222-7, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27482082

RESUMO

Mountain ranges are the world's natural water towers and provide water resources for millions of people. However, their hydrological balance and possible future changes in river flow remain poorly understood because of high meteorological variability, physical inaccessibility, and the complex interplay between climate, cryosphere, and hydrological processes. Here, we use a state-of-the art glacio-hydrological model informed by data from high-altitude observations and the latest climate change scenarios to quantify the climate change impact on water resources of two contrasting catchments vulnerable to changes in the cryosphere. The two study catchments are located in the Central Andes of Chile and in the Nepalese Himalaya in close vicinity of densely populated areas. Although both sites reveal a strong decrease in glacier area, they show a remarkably different hydrological response to projected climate change. In the Juncal catchment in Chile, runoff is likely to sharply decrease in the future and the runoff seasonality is sensitive to projected climatic changes. In the Langtang catchment in Nepal, future water availability is on the rise for decades to come with limited shifts between seasons. Owing to the high spatiotemporal resolution of the simulations and process complexity included in the modeling, the response times and the mechanisms underlying the variations in glacier area and river flow can be well constrained. The projections indicate that climate change adaptation in Central Chile should focus on dealing with a reduction in water availability, whereas in Nepal preparedness for flood extremes should be the policy priority.


Assuntos
Altitude , Mudança Climática , Rios , Movimentos da Água , Chile , Hidrologia , Camada de Gelo , Nepal , Estações do Ano
15.
Clim Change ; 110(3-4): 721-736, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-26005229

RESUMO

The analysis of climate change impact on the hydrology of high altitude glacierized catchments in the Himalayas is complex due to the high variability in climate, lack of data, large uncertainties in climate change projection and uncertainty about the response of glaciers. Therefore a high resolution combined cryospheric hydrological model was developed and calibrated that explicitly simulates glacier evolution and all major hydrological processes. The model was used to assess the future development of the glaciers and the runoff using an ensemble of downscaled climate model data in the Langtang catchment in Nepal. The analysis shows that both temperature and precipitation are projected to increase which results in a steady decline of the glacier area. The river flow is projected to increase significantly due to the increased precipitation and ice melt and the transition towards a rain river. Rain runoff and base flow will increase at the expense of glacier runoff. However, as the melt water peak coincides with the monsoon peak, no shifts in the hydrograph are expected.

16.
Science ; 328(5984): 1382-5, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20538947

RESUMO

More than 1.4 billion people depend on water from the Indus, Ganges, Brahmaputra, Yangtze, and Yellow rivers. Upstream snow and ice reserves of these basins, important in sustaining seasonal water availability, are likely to be affected substantially by climate change, but to what extent is yet unclear. Here, we show that meltwater is extremely important in the Indus basin and important for the Brahmaputra basin, but plays only a modest role for the Ganges, Yangtze, and Yellow rivers. A huge difference also exists between basins in the extent to which climate change is predicted to affect water availability and food security. The Brahmaputra and Indus basins are most susceptible to reductions of flow, threatening the food security of an estimated 60 million people.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA