Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131664, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636757

RESUMO

Pseudomonas strain 2ASCA isolated in subarctic Québec, Canada, produced a cell membrane bound levan-type exopolymer (yield 1.17 g/L), after incubation in growth media containing 6 % sucrose (w/v) at temperature of 15 °C for 96 h. The objective of this study was to optimize levan production by varying the growth parameters. Moreover, the polymer's chemical characterization has been studied with the aim of increasing knowledge and leading to future applications in many fields, including heavy metal remediation. Higher levan yields (7.37 g/L) were reached by setting up microbial fermentation conditions based on the re-use of the molasses obtained from sugar beet processing. Spectroscopy analyses confirmed the levan-type nature of the exopolymer released by strain 2ASCA, consisting of a ß-(2,6)-linked fructose repeating unit. Gel permeation chromatography revealed that the polymer has a molecular weight of 13 MDa. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) showed that the levan sequestered with a strong affinity Cr(III), which has never been previously reported, highlighting an interesting biosorption potential. In addition, SEM analysis revealed the formation of nanoparticles in acidified water solution.

2.
Antioxidants (Basel) ; 12(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979012

RESUMO

The aim of this work was to exploit the antioxidant potential of molecules recovered during the pectin purification process of citrus lemon waste and to encapsulate them in stable pectin films, with a view to a green and circular economy process. Antioxidant molecules were recovered during the pectin purification process, further recovering matter from the waste. Seven molecules were identified and quantified, and the antioxidant power of the mixture and its stability over time was evaluated. To improve the stability of the bioactive fraction, this was complexed with 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD); indeed, this procedure increased their thermal stability from 120 °C up to 250 °C, as verified by thermogravimetry. Furthermore, the most promising complexes were studied under autoclave-like conditions (120 °C, 28 min) to simulate thermal sterilization. The antioxidants and HP-ß-CD were combined in a pectin film, showing increased stability over time (up to three times) compared to uncomplexed antioxidants. This process represents a first step towards the development of applicable devices for the delivery of antioxidant molecules.

3.
Foods ; 11(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230108

RESUMO

Globe artichoke roots represent an alternative and sustainable source for inulin extraction and are well-noted for their technological and functional properties. Therefore, the aim of our study was to exploit inulin with high degree of polymerization as a replacement of durum wheat semolina for the production of functional fresh pasta. The effect of increased level of substitution (5, 10, 15%) on cooking, structural, sensory, and nutritional properties were evaluated and compared with a control sample consisting exclusively of durum wheat semolina. Inulin addition caused changes to internal structure as evaluated by scanning electron microscopy. The enriched samples showed a lower swelling index, an increasing cooking time, and values of cooking loss (2.37-3.62%), mainly due to the leaching of inulin into the cooking water. Cooked and raw enriched pasta was significantly darker and firmer than the control, but the sensory attributes were not negatively affected, especially at 5 and 10% of substitution levels. The increase of dietary fiber content in enriched pasta (3.44-12.41 g/100 g) resulted in a significant reduction of glycaemic index (pGI) and starch hydrolysis (HI). After gastrointestinal digestion, inulin-enriched pasta increased prebiotic growth able to significantly reduce E. coli cell density.

4.
Carbohydr Polym ; 279: 118989, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980348

RESUMO

Ulomoides dermestoides (UL) are macroinvertebrates insects belonging to Tenebrionidae Coleopteran family. They were used to hasten, in five days, the biodegradation-mineralization of thermoplastic starch (TPS)-poly(lactic acid) (PLA) films, otherwise biodegradable under composting conditions. After the contact of TPS-PLA film with UL for five days, TPS was metabolized and PLA was hydrolysed, as evidenced by decreasing of hydroxyl and carbonyl group peaks intensity by FTIR spectra, increasing of 13% of PLA crystallinity by DSC thermograms, reduction of PLA and TPS thermal stability by TGA analysis; faecal residues evidenced two glass transition temperature Tg, at 33 °C and 57 °C, associated with depolymerized TPS and PLA, respectively. SEM micrographs highlighted consumption of TPS-PLA surface, while GPC analysis showed a decrease in PLA concentration by 20% during contact by UL. Mineralization tests evidenced UL boosted effect on TPS biodigestion-biodegradation (80%) and PLA biodisintegration (50%), envisaging a challenging perspective for end-life management of bioplastics in environmental conditions.


Assuntos
Poliésteres/metabolismo , Amido/metabolismo , Tenebrio/metabolismo , Animais , Biodegradação Ambiental , Varredura Diferencial de Calorimetria , Fezes/química , Temperatura , Termogravimetria
5.
Polymers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919976

RESUMO

Citrus pomace derived from the industrial processing of juice and essential oils mostly consists of pectin, cellulose, hemicellulose, and simple sugars. In this work, citrus pomace waste from an agricultural company in South Italy was used as source of pectin. The extraction conditions of the polysaccharide were optimized using a suitable combination of time and a concentration of a mild organic solvent, such as acetic acid; thus recovering high Mw pectin and bioactive molecules (flavonoids and polyphenols). The pectin was structurally (GPC, FTIR), morphologically (SEM), thermally (TGA/DTG), and mechanically characterized, while bioactive molecules were separated and the total phenolic content (TPC) and total flavonoids content (TFC) were evaluated. With the aim to develop novel biocomposite-based materials, the pectin extracted from citrus waste was reinforced with different amounts of lignocellulose fractions also recovered from citrus waste after polysaccharide extraction, according to a "zero waste" circular economy approach. The prepared biocomposites were morphologically and mechanically characterized to be used as biodegradable mulching systems for crop protection. Thus, the citrus waste biomass was recovered, fractionated into its main raw materials, and these were recombined to develop novel upgraded biocomposites for mulching applications, by means of a cost-effective and eco-sustainable approach.

6.
Int J Biol Macromol ; 164: 95-104, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673722

RESUMO

Production of extracellular polysaccharides by halophilic Archaea and Bacteria has been widely reported and the members of the genus Halomonas have been identified as the most potential producers. In the present work, a novel exopolysaccharide (EPS-S6) produced by the extremely halotolerant newly isolated Halomonas elongata strain S6, was characterized. According to the HPAE-PAD results, EPS-S6 was mainly composed of glucosamine, mannose, rhamnose and glucose (1:0.9:0.7:0.3). EPS-S6 was highly negatively charged and its molecular weight was about 270 kDa. Studies on its functional properties showed that EPS-S6 had several potential features. It has noticeable antioxidant activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) inhibition and DNA protection, good ability to inhibit and to disrupt pathogenic biofilms, excellent flocculation of kaolin suspension and interesting emulsifying properties at acidic, neutral and basic pH. Therefore, EPS-S6 could have potential biotechnological concern in several fields such as in food, cosmetic and environmental industries.


Assuntos
Halomonas/química , Polissacarídeos Bacterianos/isolamento & purificação , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Biofilmes/efeitos dos fármacos , Testes de Floculação , Peso Molecular , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Tolerância ao Sal , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Açúcares/análise , Termogravimetria
8.
Int J Biol Macromol ; 71: 163-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25086181

RESUMO

A lignin-rich residue (LRR) obtained as a by-product from the fermentative bioethanol production process, and commercial alkali lignin (AL), were used as fillers for the preparation of bio-based blends and composites with poly(3-hydrobutyrate) (PHB). Chemical characterization of LRR demonstrated that the filler contained sugar residues. Rheological and thermal characterization of the blends demonstrated that LRR did not affect thermal stability of PHB, while AL had a strong pro-degrading effect. Addition of suitable amounts of LRR dramatically affected the rheological behavior of the polymer melt, suggesting that the additive can modify polymer processability. LRR was also a heterogeneous nucleating agent, potentially able to control the physical aging of PHB. Lower resilience and elongation at break values were found for the biocomposites, due to the poor interfacial adhesion between filler and matrix. Biodegradation behavior of the composites was qualitatively assessed by analyzing the surface of soil buried films. Significant surface degradation was observed for PHB, while the process was retarded at high filler concentration, as LRR inhibited hydrolytic and biotic polymer degradation. The reported results demonstrated the feasibility of the conversion of an agro-industrial by-product into a bio-resource in an environmentally friendly and cost-effective way.


Assuntos
Hidroxibutiratos/química , Poliésteres/química , Resíduos , Lignina/química , Lignina/ultraestrutura , Fenômenos Mecânicos , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA