Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 151: 110842, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980381

RESUMO

Human gut microbiota is a protective agent of intestinal and systemic health, and its modulation is of great interest for human wellbeing. In the world of biotics, besides probiotics, prebiotics, and synbiotics, also appears the denomination of "postbiotics" and "psychobiotics". Fermented dairy products are, traditionally, the major source of probiotics. Nevertheless, due to the increasing number of lactose-intolerant individuals and strict vegetarians, there is a need for innovative non-dairy products. Non-dairy biotics are being included in the normal diet and due to technological advances, many products are created using non-conventional food matrices like kombucha tea, herbal tea, baking mix, and cereal-based products. The microorganisms most used as probiotics in many of the non-dairy products are strains belonging to the genera Bifidobacterium, Enterococcus, Lactobacillus, Lactococcus, Streptococcus, and Bacillus, and some yeast strains namely Saccharomyces cerevisiae var. boulardii. Recently, several other yeasts have been described as having probiotic properties. This review describes gut-derived effects in humans of possible microorganisms, such as yeasts, and bacteria, isolated from non-dairy fermented and non-fermented foods and beverages. The microorganisms responsible for the processing of these non-dairy fermented products, together with the prebiotics, form a class of nutrients that have been proven to be beneficial for our gut health.


Assuntos
Probióticos , Simbióticos , Bifidobacterium , Estado de Consciência , Humanos , Prebióticos
2.
Foods ; 9(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276510

RESUMO

Aflatoxins B1 and B2 are two highly toxic mycotoxins that have been sometimes found in wines. Currently, no technological solution is available to reduce or eliminate aflatoxins from wines when they are present. Therefore, this work aims to study the efficiency of already approved wine fining agents like activated carbon, potassium caseinate, chitosan, and bentonite for aflatoxins B1 and B2 removal from white and red wines. It was observed that the fining agents' efficiency in removing aflatoxins was dependent on the wine matrix, being higher in white than in red wine. Bentonite was the most efficient fining agent, removing both aflatoxins (10 µg/L total) from the white wine and 100% of aflatoxin B1 and 82% of aflatoxin B2 from red wine. The impact of bentonite on white wine chromatic characteristics was low (color difference, ΔE* = 1.35). For red wine, bentonite addition caused a higher impact on wine' chromatic characteristics (ΔE* = 4.80) due to the decrease in total anthocyanins, although this decrease was only 1.5 points of color intensity. Considering the high efficiency of bentonite in aflatoxins B1 and B2 removal and despite the impact on red wine color, bentonite is a very good technological solution for aflatoxin removal in white and red wines.

3.
Antioxidants (Basel) ; 8(11)2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31684175

RESUMO

Chitosan is an environmentally-friendly active molecule that has been explored for numerous agricultural uses. Its use in crop protection is well-known, however, other properties, such as bioactivity, deserve attention. Moreover, the modes of actions of chitosan remain to be elucidated. The present study assessed the levels of total phenolic compounds, the antioxidant potential, and the expression of reactive oxygen species (ROS) scavenging genes in the berries (skins and seeds), leaves, cluster stems, and shoots upon chitosan application on two red grapevine varieties (Touriga Franca and Tinto Cão). The application of chitosan on the whole vine before and after veraison led to the increased levels of polyphenols, anthocyanins, and tannins in Tinto Cão berries, and polyphenols and tannins in Touriga Franca berries, respectively. CUPric Reducing Antioxidant Capacity (CUPRAC) and Ferric Reducing Antioxidant Power (FRAP) assays indicated an increase in the antioxidant potential of berries. With the exception of ascorbate peroxidase (APX), all the ROS pathway genes tested, i.e., iron-superoxide dismutase (Fe-SOD), copper-zinc-superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione reductase (GR), glutaredoxin (Grx), respiratory burst oxidase (Rboh), amine oxidase (AO), peroxidase (POD) and polyphenol oxidase (PPO), were found up-regulated in chitosan-treated berries. Results from the analyses of leaves, stems, and shoots revealed that chitosan not only induced the synthesis of phenolic compounds but also acted as a facilitator for the transfer of polyphenols from the leaves to the berries.

4.
Int J Food Microbiol ; 188: 45-52, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25087204

RESUMO

Lactic acid bacteria (LAB) are a promising solution to reduce exposure to dietary mycotoxins because of the unique mycotoxin decontaminating characteristic of some LAB. Ochratoxin A (OTA) is one of the most prominent mycotoxins found in agricultural commodities. The present work reports on the ability of Pediococcus parvulus strains that were isolated from Douro wines that spontaneously underwent malolactic fermentation to detoxify OTA. These strains were identified and characterised using a polyphasic approach that employed both phenotypic and genotypic methods. When cultivated on OTA-supplemented MRS media, OTA was biodegraded into OTα by certain P. parvulus strains. The presence of OTα was confirmed using LC-MS/MS. The conversion of OTA into OTα indicates that the OTA amide bond was hydrolysed by a putative peptidase. The rate of OTA biodegradation was found to be dependent on the inoculum size and on the incubation temperature. Adsorption assays with dead P. parvulus cells showed that approximately 1.3%±1.0 of the OTA was adsorbed onto cells wall, which excludes this mechanism in the elimination of OTA by strains that degrades OTA. Under optimum conditions, 50% and 90% of OTA were degraded in 6 and 19h, respectively. Other LAB strains that belonged to different species were tested but did not degrade OTA. OTA biodegradation by P. parvulus UTAD 473 was observed in grape must. Because some P. parvulus strains have relevant probiotic properties, the strains that were identified could be particularly relevant to food and feed applications to counteract the toxic effects of OTA.


Assuntos
Ocratoxinas/metabolismo , Pediococcus/metabolismo , Vinho/microbiologia , Dados de Sequência Molecular , Ocratoxinas/análise , Filogenia , Espectrometria de Massas em Tandem , Tempo , Vitis/química , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA