Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1437668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145292

RESUMO

Hereditary spastic paraplegia (HSP) is a heterogeneous group of neurological disorders that are characterized by progressive spasticity and weakness in the lower limbs. SPG26 is a complicated form of HSP, which includes not only weakness in the lower limbs, but also cognitive impairment, developmental delay, cerebellar ataxia, dysarthria, and peripheral neuropathy, and is caused by biallelic mutations in the B4GALNT1 (beta-1,4-N-acetylgalactosaminyltransferase 1) gene. The B4GALNT1 gene encodes ganglioside GM2/GD2 synthase (GM2S), which catalyzes the transfer of N-acetylgalactosamine to lactosylceramide, GM3, and GD3 to generate GA2, GM2, and GD2, respectively. The present study attempted to characterize a novel B4GALNT1 variant (NM_001478.5:c.937G>A p.Asp313Asn) detected in a patient with progressive multi-system neurodegeneration as well as deleterious variants found in the general population in Japan. Peripheral blood T cells from our patient lacked the ability for activation-induced ganglioside expression assessed by cell surface cholera toxin binding. Structural predictions suggested that the amino acid substitution, p.Asp313Asn, impaired binding to the donor substrate UDP-GalNAc. An in vitro enzyme assay demonstrated that the variant protein did not exhibit GM2S activity, leading to the diagnosis of HSP26. This is the first case diagnosed with SPG26 in Japan. We then extracted 10 novel missense variants of B4GALNT1 from the whole-genome reference panel jMorp (8.3KJPN) of the Tohoku medical megabank organization, which were predicted to be deleterious by Polyphen-2 and SIFT programs. We performed a functional evaluation of these variants and demonstrated that many showed perturbed subcellular localization. Five of these variants exhibited no or significantly decreased GM2S activity with less than 10% activity of the wild-type protein, indicating that they are carrier variants for HSP26. These results provide the basis for molecular analyses of B4GALNT1 variants present in the Japanese population and will help improve the molecular diagnosis of patients suspected of having HSP.

2.
Front Neurosci ; 18: 1387221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119456

RESUMO

Ganglioside GM3 synthase is a key enzyme involved in the biosynthesis of gangliosides. GM3 synthase deficiency (GM3SD) causes an absence of GM3 and all downstream biosynthetic derivatives, including all the a-, b-, c-series gangliosides, commonly found in neural tissues. The affected individuals manifest with severe irritability, intractable seizures, hearing loss, blindness, and profound intellectual disability. It has been reported that oral ganglioside supplementation has achieved some significant improvements in clinical symptoms, growth parameters, and developmental and cognitive scores in GM3SD patients. To gain insight into the molecular mechanisms of this supplementation, we performed supplementation of oral bovine milk gangliosides to GM3 synthase-deficient mice from early weaning periods. The oral milk ganglioside preparations were dominated by GM3 and GD3 gangliosides. Oral milk ganglioside supplementation improved the decreased cognitive function observed in GM3 synthase-deficient mice. The improvement in cognitive function was accompanied by increased ganglioside levels and neurogenesis in the hippocampus in the supplemented animals.

3.
Eur J Immunol ; 53(10): e2350452, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37565654

RESUMO

Theiler's murine encephalomyelitis virus (TMEV) causes a chronic demyelinating disease similar to multiple sclerosis in mice. Although sialic acids have been shown to be essential for TMEV attachment to the host, the surface receptor has not been identified. While type I interferons play a pivotal role in the elimination of the chronic infectious Daniel (DA) strain, the role of plasmacytoid dendritic cells (pDCs) is controversial. We herein found that TMEV binds to conventional DCs but not to pDCs. A glycomics analysis showed that the sialylated N-glycan fractions were lower in pDCs than in conventional DCs, indicating that pDCs are not susceptible to TMEV infection due to the low levels of sialic acid. TMEV capsid proteins contain an integrin recognition motif, and dot blot assays showed that the integrin proteins bind to TMEV and that the viral binding was reduced in the desialylated αX ß2 . αX ß2 protein suppressed TMEV replication in vivo, and TMEV co-localized with integrin αM at the cell membrane and TLR 3 in the cytoplasm, suggesting that αM serves as the viral attachment and entry. These results show that the chronic encephalomyelitis virus utilizes sialylated integrins as cell surface receptors, leading to cellular tropism to evade pDC activation.


Assuntos
Encefalomielite , Integrinas , Camundongos , Animais , Receptores de Superfície Celular , Células Dendríticas , Tropismo
4.
Cell Mol Life Sci ; 80(6): 167, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249637

RESUMO

Monosialoganglioside GM3 is the simplest ganglioside involved in various cellular signaling. Cell surface distribution of GM3 is thought to be crucial for the function of GM3, but little is known about the cell surface GM3 distribution. It was shown that anti-GM3 monoclonal antibody binds to GM3 in sparse but not in confluent melanoma cells. Our model membrane study evidenced that monoclonal anti-GM3 antibodies showed stronger binding when GM3 was in less fluid membrane environment. Studies using fluorescent GM3 analogs suggested that GM3 was clustered in less fluid membrane. Moreover, fluorescent lifetime measurement showed that cell surface of high density melanoma cells is more fluid than that of low density cells. Lipidomics and fatty acid supplementation experiment suggested that monounsaturated fatty acid-containing phosphatidylcholine contributed to the cell density-dependent membrane fluidity. Our results indicate that anti-GM3 antibody senses GM3 clustering and the number and/or size of GM3 cluster differ between sparse and confluent melanoma cells.


Assuntos
Gangliosídeo G(M3) , Melanoma , Humanos , Gangliosídeo G(M3)/metabolismo , Membrana Celular/metabolismo , Anticorpos Monoclonais , Melanoma/metabolismo , Contagem de Células
5.
Brain Dev ; 45(5): 270-277, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36690566

RESUMO

BACKGROUND: ST3GAL5 encodes GM3 synthase (ST3 beta-galactoside alpha-2,3-sialyltransferase 5; ST3GAL5), which synthesizes GM3 by transferring sialic acid to lactosylceramide. GM3, a sialic acid-containing glycosphingolipid known as ganglioside, is a precursor to the biosynthesis of various more complex gangliosides that are active in the brain. Biallelic variants in ST3GAL5 cause GM3 synthase deficiency (GM3SD), a rare congenital disorder of glycosylation. GM3SD was first identified in the Amish population in 2004. CASE: We report two siblings diagnosed with GM3SD due to novel compound heterozygous ST3GAL5 variants. The novel ST3GAL5 variants, detected by whole-exome sequencing in the patients, were confirmed to be pathogenic by GM3 synthase assay. The clinical courses of these patients, which began in infancy with irritability and growth failure, followed by developmental delay and hearing loss, were consistent with previous case reports of GM3SD. The older sibling underwent deep brain stimulation for severe involuntary movements at the age of 9 years. The younger sibling suffered from acute encephalopathy at the age of 9 months and subsequently developed refractory epilepsy. DISCUSSION: Reports of GM3SD outside the Amish population are rare, and whole-exome sequencing may be required to diagnose GM3SD in non-Amish patients. Since an effective treatment for GM3SD has not yet been established, we might select deep brain stimulation as a symptomatic treatment for involuntary movements in GM3SD.


Assuntos
Discinesias , Irmãos , Humanos , Criança , Lactente , Ácido N-Acetilneuramínico , Gangliosídeos
6.
Methods Mol Biol ; 2613: 101-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587074

RESUMO

GM3 synthase (GM3S) is a sialyltransferase that transfers sialic acid from CMP-sialic acid to lactosylceramide. This reaction results in formation of ganglioside GM3 and is essential for biosynthesis of its downstream derivatives, which include a- and b-series gangliosides. Here, we describe a method for GM3S enzymatic assay using fluorescence-labeled alkyl lactoside as acceptor substrate, followed by HPLC for separation of enzymatic product. The method allows quantitative assay of GM3S sialyltransferase activity in cultured cells and mouse brain tissues.


Assuntos
Gangliosídeo G(M3) , Sialiltransferases , Camundongos , Animais , Gangliosídeos , Células Cultivadas
7.
Methods Mol Biol ; 2613: 127-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587076

RESUMO

This chapter describes the protocols for mass spectrometry (MS) applied to the structural characterization of neutral glycosphingolipids (GSLs) and the determination of neutral GSL contents in biological materials. The structural characterization is performed by thin layer chromatography-matrix assisted laser desorption ionization/mass spectrometry (TLC-MALDI/MS) and liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI/MS) with reversed phase separation. The content determination is carried out by LC-ESI/MS with multiple reaction monitoring (MRM). These protocols provide clues for the functions of neutral GSLs at the level of a single GSL molecular species.


Assuntos
Glicoesfingolipídeos Neutros , Glicoesfingolipídeos Neutros/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização por Electrospray , Cromatografia Líquida , Cromatografia em Camada Fina/métodos , Glicoesfingolipídeos/química
8.
Mol Genet Metab ; 137(4): 342-348, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36335793

RESUMO

GM3 synthase (GM3S) deficiency is a rare neurodevelopmental disorder caused by an inability to synthesize gangliosides, for which there is currently no treatment. Gangliosides are brain-enriched, plasma membrane glycosphingolipids with poorly understood biological functions related to cell adhesion, growth, and receptor-mediated signal transduction. Here, we investigated the effects of GM3S deficiency on metabolism and mitochondrial function in a mouse model. By indirect calorimetry, GM3S knockout mice exhibited increased whole-body respiration and an increased reliance upon carbohydrate as an energy source. 18F-FDG PET confirmed higher brain glucose uptake in knockout mice, and GM3S deficient N41 neuronal cells showed higher glucose utilization in vitro. Brain mitochondria from knockout mice respired at a higher rate on Complex I substrates including pyruvate. This appeared to be due to higher expression of pyruvate dehydrogenase (PDH) and lower phosphorylation of PDH, which would favor pyruvate entry into the mitochondrial TCA cycle. Finally, it was observed that blocking glucose metabolism with the glycolysis inhibitor 2-deoxyglucose reduced seizure intensity in GM3S knockout mice following administration of kainate. In conclusion, GM3S deficiency may be associated with a hypermetabolic phenotype that could promote seizure activity.


Assuntos
Glucose , Sialiltransferases , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Gangliosídeo G(M3)/metabolismo , Glucose/metabolismo , Camundongos Knockout , Ácido Pirúvico , Convulsões/genética , Sialiltransferases/genética , Sialiltransferases/metabolismo
9.
Am J Med Genet A ; 188(9): 2590-2598, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35775650

RESUMO

Childhood-onset forms of hereditary spastic paraplegia are ultra-rare diseases and often present with complex features. Next-generation-sequencing allows for an accurate diagnosis in many cases but the interpretation of novel variants remains challenging, particularly for missense mutations. Where sufficient knowledge of the protein function and/or downstream pathways exists, functional studies in patient-derived cells can aid the interpretation of molecular findings. We here illustrate the case of a 13-year-old female who presented with global developmental delay and later mild intellectual disability, progressive spastic diplegia, spastic-ataxic gait, dysarthria, urinary urgency, and loss of deep tendon reflexes of the lower extremities. Exome sequencing showed a novel splice-site variant in trans with a novel missense variant in B4GALNT1 [NM_001478.5: c.532-1G>C/c.1556G>C (p.Arg519Pro)]. Functional studies in patient-derived fibroblasts and cell models of GM2 synthase deficiency confirmed a loss of B4GALNT1 function with no synthesis of GM2 and other downstream gangliosides. Collectively these results established the diagnosis of B4GALNT1-associated HSP (SPG26). Our approach illustrates the importance of careful phenotyping and functional characterization of novel gene variants, particularly in the setting of ultra-rare diseases, and expands the clinical and molecular spectrum of SPG26, a disorder of complex ganglioside biosynthesis.


Assuntos
Paraplegia Espástica Hereditária , Adolescente , Criança , Feminino , Gangliosídeos/genética , Humanos , Mutação , Linhagem , Doenças Raras , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética
10.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628171

RESUMO

Gangliosides (glycosphingolipids containing one or more sialic acids) are highly expressed in neural tissues in vertebrates, and four species (GM1a, GD1a, GD1b, GT1b) are predominant in mammalian brains. GM3 is the precursor of each of these four species and is the major ganglioside in many nonneural tissues. GM3 synthase (GM3S), encoded by ST3GAL5 gene in humans, is a sialyltransferase responsible for synthesis of GM3 from its precursor, lactosylceramide. ST3GAL5 mutations cause an autosomal recessive form of severe infantile-onset neurological disease characterized by progressive microcephaly, intellectual disability, dyskinetic movements, blindness, deafness, intractable seizures, and pigment changes. Some of these clinical features are consistently present in patients with ST3GAL5 mutations, whereas others have variable expression. GM3S knockout (KO) mice have deafness and enhanced insulin sensitivity, but otherwise do not display the above-described neurological defects reported in ST3GAL5 patients. The authors present an overview of physiological functions and pathological aspects of gangliosides based on findings from studies of GM3S KO mice and discuss differential phenotypes of GM3S KO mice versus human GM3S-deficiency patients.


Assuntos
Surdez , Epilepsia , Sialiltransferases , Animais , Surdez/enzimologia , Modelos Animais de Doenças , Epilepsia/enzimologia , Humanos , Camundongos , Camundongos Knockout , Sialiltransferases/deficiência , Sialiltransferases/metabolismo
11.
FEBS J ; 289(17): 5152-5165, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34125497

RESUMO

Two decades ago, we achieved molecular cloning of ganglioside GM3 synthase (GM3S; ST3GAL5), the enzyme responsible for initiating biosynthesis of complex gangliosides. The efforts of our research group since then have been focused on clarifying the physiological and pathological roles of gangliosides, particularly GM3. This review summarizes our long-term studies on the roles of GM3 in insulin resistance and adipogenesis in adipose tissues, cholesterol uptake in intestine, and leptin resistance in hypothalamus. We hypothesized that GM3 plays a role in innate immune function of macrophages and demonstrated that molecular species of GM3 with differing acyl-chain structures and modifications functioned as pro- and anti-inflammatory endogenous Toll-like receptor 4 (TLR4) modulators in macrophages. Very-long-chain and α-hydroxy GM3 species enhanced TLR4 activation, whereas long-chain and unsaturated GM3 species counteracted this effect. Lipidomic analyses of serum and adipose tissues revealed that imbalances between such pro- and anti-inflammatory GM3 species promoted progression of metabolic disorders. GM3 thus functions as a physiological regulatory factor controlling the balance between homeostatic and pathological states. Ongoing studies based on these findings will clarify the mechanisms underlying ganglioside-dependent control of energy homeostasis and innate immune responses.


Assuntos
Gangliosídeo G(M3) , Resistência à Insulina , Tecido Adiposo/metabolismo , Gangliosídeo G(M3)/química , Gangliosídeo G(M3)/metabolismo , Homeostase , Humanos , Receptor 4 Toll-Like/genética
12.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731387

RESUMO

Gangliosides are essential components of cell membranes and are involved in a variety of physiological processes, including cell growth, differentiation, and receptor-mediated signal transduction. They regulate functions of proteins in membrane microdomains, notably receptor tyrosine kinases such as insulin receptor (InsR) and epidermal growth factor receptor (EGFR), through lateral association. Studies during the past two decades using knockout (KO) or pharmacologically inhibited cells, or KO mouse models for glucosylceramide synthase (GCS; Ugcg), GM3 synthase (GM3S; St3gal5), and GD3 synthase (GD3S; St8sia1) have revealed essential roles of gangliosides in hypothalamic control of energy balance. The a-series gangliosides GM1 and GD1a interact with leptin receptor (LepR) and promote LepR signaling through activation of the JAK2/STAT3 pathway. Studies of GM3S KO cells have shown that the extracellular signal-regulated kinase (ERK) pathway, downstream of the LepR signaling pathway, is also modulated by gangliosides. Recent studies have revealed crosstalk between the LepR signaling pathway and other receptor signaling pathways (e.g., InsR and EGFR pathways). Gangliosides thus have the ability to modulate the effects of leptin by regulating functions of such receptors, and by direct interaction with LepR to control signaling.


Assuntos
Metabolismo Energético/fisiologia , Gangliosídeos/metabolismo , Hipotálamo/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gangliosídeos/genética , Humanos , Camundongos , Camundongos Knockout , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Sialiltransferases/metabolismo
13.
EMBO J ; 39(12): e101732, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32378734

RESUMO

Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long-chain (LCFA) and very-long-chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA-GM3 increase significantly in metabolic disorders, while LCFA-GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA-GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4-mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA-GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA-GM3 and unsaturated VLCFA-GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand-molecular docking analysis supports that VLCFA-GM3 and LCFA-GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA-GM3 is a risk factor for TLR4-mediated disease progression.


Assuntos
Gangliosídeo G(M3)/metabolismo , Monócitos/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Gangliosídeo G(M3)/química , Gangliosídeo G(M3)/genética , Células HEK293 , Humanos , Camundongos , Camundongos Mutantes , Monócitos/química , Obesidade/genética , Multimerização Proteica , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/genética
14.
Glycobiology ; 29(3): 260-268, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476082

RESUMO

Alteration of glycosphingolipid (GSL) expression plays key roles in the pathogenesis and pathophysiology of many important human diseases, including cancer, diabetes and glycosphingolipidosis. Inflammatory processes are involved in development and progression of diabetic nephropathy, a major complication of type 2 diabetes mellitus. GSLs are known to play roles in inflammatory responses in various diseases, and levels of renal GSLs are elevated in mouse models of diabetic nephropathy; however, little is known regarding the pathophysiological role of these GSLs in this disease process. We studied proinflammatory activity of GSLs in diabetic nephropathy using spontaneously diabetic mouse strain KK. Mice were fed a high-fat diet (HFD) (60% kcal from fat) or normal diet (ND) (4.6% kcal from fat) for a period of 8 wk. HFD-feeding resulted in quantitative and qualitative changes of renal globo-series GSLs (particularly Gb3Cer), upregulation of TNF-α, and induction of renal inflammation. Gb3Cer/Gb4Cer treatment enhanced inflammatory responses via TLR4 in TLR4/MD-2 complex expressing cells, including HEK293T, mouse bone marrow-derived macrophages (BMDMs) and human monocytes. Our findings suggest that HFD-induced increase of Gb3Cer/Gb4Cer positively modulate TLR4-mediated inflammatory response, and that such GSLs play an important pathophysiological role in diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/genética , Glicoesfingolipídeos/genética , Inflamação/genética , Receptor 4 Toll-Like/genética , Triexosilceramidas/genética , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Glicoesfingolipídeos/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Inflamação/patologia , Rim/metabolismo , Rim/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Transdução de Sinais/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética
15.
J Lipid Res ; 59(11): 2181-2187, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30242108

RESUMO

Intestinal cholesterol absorption is a key regulator of systemic cholesterol homeostasis. Excessive dietary cholesterol and its intestinal uptake lead to hypercholesterolemia, a major risk factor for cardiovascular disease. Intestinal cholesterol uptake is mediated by Niemann-Pick C1-like 1 (NPC1L1), a transmembrane protein localized in membrane microdomains (lipid rafts) enriched in gangliosides and cholesterol. The roles of gangliosides, such as monosialodihexosylganglioside (GM3) and its synthesizing enzyme GM3 synthase (GM3S), in NPC1L1-dependent cholesterol uptake have not been examined previously. Here, we examined NPC1L1-dependent cholesterol uptake in a cell model as well as in wild-type and apoE-deficient mice fed normal or high-cholesterol diets. We showed that NPC1L1-dependent cholesterol uptake was impaired in GM3S-deficient cells and that GM3S deficiency promoted resistance to hypercholesterolemia in both wild-type and apoE-deficient mice fed the high-cholesterol but not the normal diet. Our findings suggest that GM3 and related gangliosides are essential for NPC1L1-mediated intestinal cholesterol absorption and are potential targets for hypercholesterolemia therapy.


Assuntos
Colesterol/sangue , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Transporte Biológico , Gangliosídeo G(M3) , Células HEK293 , Humanos , Hipercolesterolemia/metabolismo , Imuno-Histoquímica , Absorção Intestinal , Lipoproteínas/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espectrometria de Massas em Tandem
16.
J Lipid Res ; 59(8): 1472-1481, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880531

RESUMO

GM3, a precursor for synthesis of a- and b-series gangliosides, is elevated in adipocytes of obese model animals and in sera of obese human patients with type 2 diabetes and/or dyslipidemia. GM3 synthase (GM3S)-KO C57BL/6 mice display enhanced insulin sensitivity and reduced development of high-fat diet-induced insulin resistance. However, the pathophysiological roles of GM3 and related gangliosides in the central control of feeding and metabolism remain unclear. We found that a mouse model (KKAy GM3S KO) generated by KO of the GM3S gene in the yellow obese strain, KKAy, displayed significant amelioration of obese phenotype. Whereas KKAy mice were hyperphagic and developed severe obesity, KKAy GM3S KO mice had significantly lower body weight and food intake, and greater glucose and insulin tolerance. The hypothalamic response to intraperitoneal administration of leptin was greatly reduced in KKAy mice, but was retained in KKAy GM3S KO mice. In studies of a cultured mouse hypothalamic neuronal cell line, enhanced leptin-dependent phosphorylation of ERK was observed in GM3S-deficient cells. Furthermore, KKAy GM3S KO mice did show altered coat color, suggesting that GM3S is also involved in melanocortin signaling. Our findings, taken together, indicate that GM3-related gangliosides play key roles in leptin and melanocortin signaling.


Assuntos
Gangliosídeo G(M3)/biossíntese , Leptina/metabolismo , Melanocortinas/metabolismo , Transdução de Sinais , Animais , Técnicas de Inativação de Genes , Camundongos , Camundongos Obesos , Sialiltransferases/deficiência , Sialiltransferases/genética
17.
Prog Mol Biol Transl Sci ; 156: 151-195, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29747813

RESUMO

Since the successful molecular cloning in 1998 of GM3 synthase (GM3S, ST3GAL5), the enzyme responsible for initiating biosynthesis of all complex gangliosides, the efforts of our research group have been focused on clarifying the physiological and pathological implications of gangliosides, particularly GM3. We have identified isoforms of GM3S proteins having distinctive lengths of N-terminal cytoplasmic tails, and found that these cytoplasmic tails define subcellular localization, stability, and in vivo activity of GM3S isoforms. Our studies of the molecular pathogenesis of type 2 diabetes, focused on interaction between insulin receptor and GM3 in membrane microdomains, led to a novel concept: type 2 diabetes and certain other lifestyle-related diseases are membrane microdomain disorders resulting from aberrant expression of gangliosides. This concept has enhanced our understanding of the pathophysiological roles of GM3 and related gangliosides in various diseases involving chronic inflammation, such as insulin resistance, leptin resistance, and T-cell function and immune disorders (e.g., allergic asthma). We also demonstrated an essential role of GM3 in murine and human auditory systems; a common pathological feature of GM3S deficiency is deafness. This is the first direct link reported between gangliosides and auditory functions.


Assuntos
Gangliosídeo G(M3)/metabolismo , Doenças Metabólicas/fisiopatologia , Animais , Humanos
18.
Proc Natl Acad Sci U S A ; 113(39): 10992-7, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27625424

RESUMO

Dystroglycan (DG) is a highly expressed extracellular matrix receptor that is linked to the cytoskeleton in skeletal muscle. DG is critical for the function of skeletal muscle, and muscle with primary defects in the expression and/or function of DG throughout development has many pathological features and a severe muscular dystrophy phenotype. In addition, reduction in DG at the sarcolemma is a common feature in muscle biopsies from patients with various types of muscular dystrophy. However, the consequence of disrupting DG in mature muscle is not known. Here, we investigated muscles of transgenic mice several months after genetic knockdown of DG at maturity. In our study, an increase in susceptibility to contraction-induced injury was the first pathological feature observed after the levels of DG at the sarcolemma were reduced. The contraction-induced injury was not accompanied by increased necrosis, excitation-contraction uncoupling, or fragility of the sarcolemma. Rather, disruption of the sarcomeric cytoskeleton was evident as reduced passive tension and decreased titin immunostaining. These results reveal a role for DG in maintaining the stability of the sarcomeric cytoskeleton during contraction and provide mechanistic insight into the cause of the reduction in strength that occurs in muscular dystrophy after lengthening contractions.


Assuntos
Citoesqueleto/metabolismo , Distroglicanas/metabolismo , Contração Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Sarcômeros/metabolismo , Animais , Conectina/metabolismo , Citoesqueleto/efeitos dos fármacos , Acoplamento Excitação-Contração/efeitos dos fármacos , Feminino , Contração Isométrica/efeitos dos fármacos , Masculino , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Necrose , Tamanho do Órgão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sarcolema/metabolismo , Sarcômeros/efeitos dos fármacos , Tamoxifeno/farmacologia
19.
Glycobiology ; 26(12): 1284-1296, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27496765

RESUMO

Both LARGE1 (formerly LARGE) and its paralog LARGE2 are bifunctional glycosyltransferases with xylosy- and glucuronyltransferase activities, and are capable of synthesizing polymers composed of a repeating disaccharide [-3Xylα1,3GlcAß1-]. Post-translational modification of the O-mannosyl glycan of α-dystroglycan (α-DG) with the polysaccharide is essential for it to act as a receptor for ligands in the extracellular matrix (ECM), and both LARGE paralogs contribute to the modification in vivo. LARGE1 and LARGE2 have different tissue distribution profiles and enzymatic properties; however, the functional difference of the homologs remains to be determined, and α-DG is the only known substrate for the modification by LARGE1 or LARGE2. Here we show that LARGE2 can modify proteoglycans (PGs) with the laminin-binding glycan. We found that overexpression of LARGE2, but not LARGE1, mediates the functional modification on the surface of DG-/-, Pomt1-/- and Fktn-/- embryonic stem cells. We identified a heparan sulfate-PG glypican-4 as a substrate for the LARGE2-dependent modification by affinity purification and subsequent mass spectrometric analysis. Furthermore, we showed that LARGE2 could modify several additional PGs with the laminin-binding glycan, most likely within the glycosaminoglycan (GAG)-protein linkage region. Our results indicate that LARGE2 can modify PGs with the GAG-like polysaccharide composed of xylose and glucuronic acid to confer laminin binding. Thus, LARGE2 may play a differential role in stabilizing the basement membrane and modifying its functions by augmenting the interactions between laminin globular domain-containing ECM proteins and PGs.


Assuntos
Glicosiltransferases/metabolismo , Laminina/metabolismo , Proteoglicanas/metabolismo , Animais , Sítios de Ligação , Células-Tronco Embrionárias/metabolismo , Glicosilação , Glicosiltransferases/química , Laminina/química , Camundongos , Camundongos Knockout , Proteoglicanas/química
20.
Elife ; 32014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25279699

RESUMO

Dystroglycan is a cell membrane receptor that organizes the basement membrane by binding ligands in the extracellular matrix. Proper glycosylation of the α-dystroglycan (α-DG) subunit is essential for these activities, and lack thereof results in neuromuscular disease. Currently, neither the glycan synthesis pathway nor the roles of many known or putative glycosyltransferases that are essential for this process are well understood. Here we show that FKRP, FKTN, TMEM5 and B4GAT1 (formerly known as B3GNT1) localize to the Golgi and contribute to the O-mannosyl post-phosphorylation modification of α-DG. Moreover, we assigned B4GAT1 a function as a xylose ß1,4-glucuronyltransferase. Nuclear magnetic resonance studies confirmed that a glucuronic acid ß1,4-xylose disaccharide synthesized by B4GAT1 acts as an acceptor primer that can be elongated by LARGE with the ligand-binding heteropolysaccharide. Our findings greatly broaden the understanding of α-DG glycosylation and provide mechanistic insight into why mutations in B4GAT1 disrupt dystroglycan function and cause disease.


Assuntos
Distroglicanas/metabolismo , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/metabolismo , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Ácido Glucurônico/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutação/genética , Fosforilação , Transporte Proteico , Frações Subcelulares/enzimologia , Especificidade por Substrato , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA