Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1253436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152378

RESUMO

Planetary protection is a guiding principle aiming to prevent microbial contamination of the solar system by spacecraft (forward contamination) and extraterrestrial contamination of the Earth (backward contamination). Bioburden reduction on spacecraft, including cruise and landing systems, is required to prevent microbial contamination from Earth during space exploration missions. Several sterilization methods are available; however, selecting appropriate methods is essential to eliminate a broad spectrum of microorganisms without damaging spacecraft components during manufacturing and assembly. Here, we compared the effects of different bioburden reduction techniques, including dry heat, UV light, isopropyl alcohol (IPA), hydrogen peroxide (H2O2), vaporized hydrogen peroxide (VHP), and oxygen and argon plasma on microorganisms with different resistance capacities. These microorganisms included Bacillus atrophaeus spores and Aspergillus niger spores, Deinococcus radiodurans, and Brevundimonas diminuta, all important microorganisms for considering planetary protection. Bacillus atrophaeus spores showed the highest resistance to dry heat but could be reliably sterilized (i.e., under detection limit) through extended time or increased temperature. Aspergillus niger spores and D. radiodurans were highly resistant to UV light. Seventy percent of IPA and 7.5% of H2O2 treatments effectively sterilized D. radiodurans and B. diminuta but showed no immediate bactericidal effect against B. atrophaeus spores. IPA immediately sterilized A. niger spores, but H2O2 did not. During VHP treatment under reduced pressure, viable B. atrophaeus spores and A. niger spores were quickly reduced by approximately two log orders. Oxygen plasma sterilized D. radiodurans but did not eliminate B. atrophaeus spores. In contrast, argon plasma sterilized B. atrophaeus but not D. radiodurans. Therefore, dry heat could be used for heat-resistant component bioburden reduction, and VHP or plasma for non-heat-resistant components in bulk bioburden reduction. Furthermore, IPA, H2O2, or UV could be used for additional surface bioburden reduction during assembly and testing. The systemic comparison of sterilization efficiencies under identical experimental conditions in this study provides basic criteria for determining which sterilization techniques should be selected during bioburden reduction for forward planetary protection.

2.
Sci Adv ; 9(2): eadd8295, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638161

RESUMO

Just as the shapes of snowflakes provide us with information on the temperature and humidity of the upper atmosphere, the characteristics of presolar grains in meteorites place limits on their formation environment in a stellar outflow. However, even in the case of well-characterized presolar grains consisting of a titanium carbide core and a graphitic carbon mantle, it is not possible to delimit their formation environment. Here, we have demonstrated the formation of core-mantle grains in gravitational and microgravity environments and have found that core-mantle grains are formed by a nonclassical nucleation pathway involving the three steps: (i) primary nucleation of carbon at a substantially high supersaturation, (ii) heterogeneous condensation of titanium carbide on the carbon, and (iii) fusion of nuclei. We argue that the characteristics of not only core-mantle grains but also other presolar and solar grains might be accurately explained by considering a nonclassical nucleation pathway.

3.
Inorg Chem ; 58(17): 11579-11588, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31430132

RESUMO

Thermoelectric power generators require semiconductor materials with controlled phonon and free charge carrier transport properties. This could be achieved by changing their molecular and lattice dynamics through introducing/controlling structural imperfections (defects engineering). The structural imperfections such as point defects and compositional segregations in a multicomponent alloy are observed experimentally, and their impact on electron and phonon transport properties was explained. The thermoelectric properties of a III-V ternary alloy InGaSb was improved by the presence of point defects and compositional segregations. The compositions were segregated randomly, and they had a major impact on the phonon contribution to the thermal conductivity. The point defects affected electrical resistivity, and the Seebeck coefficient was influenced by carrier concentration. The figure of merit (ZT) of In0.95Ga0.05Sb is enhanced to 0.62 at 573 K, and it is the highest among any other reported values of binary/ternary III-V semiconductor alloys. The enhancement in the ZT of InGaSb from the viewpoints of point defects and compositional segregations are explained. This experimental defect engineering study could be helpful to understand and improve the thermoelectric properties of many other crystalline materials.

4.
NPJ Microgravity ; 5: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30963108

RESUMO

Microgravity crystal growth experiment for the growth of In0.11Ga0.89Sb was performed at the Chinese recoverable satellite through the space program SJ-10. This experiment is aimed to understand the melt formation and growth kinetics of In x Ga1-x Sb solid solution with higher indium composition, because their segregation coefficient was higher than the crystals with lower indium compositions. The target composition and uniformity were achieved with higher growth rate under microgravity, whereas the uniformity in composition was not achieved under normal gravity. The growth and dissolution were affected mainly by the steady state equilibrium in the melt composition because of the convection under normal gravity. The non-steady state equilibrium in the melt composition under microgravity helped to achieve a higher growth rate and compositional homogeneity at higher indium composition of In x Ga1-x Sb solid solution.

5.
Nat Commun ; 9(1): 3820, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232326

RESUMO

Alumina (Al2O3) is believed to be the first major condensate to form in the gas outflow from oxygen-rich evolved stars because of the refractoriness and that α-Al2O3 (corundum, most stable polymorph) is a potential origin of a 13 µm feature that appears close to stars. However, no one has directly reproduced the 13 µm feature experimentally, and it has remained as a noteworthy unidentified infrared band. Here, we report nucleation experiments on Al2O3 nanoparticles monitored by a specially designed infrared spectrometer in the microgravity environment of a sounding rocket. The conditions approximate to those around asymptotic giant branch (AGB) stars. The measured spectra of the nucleated Al2O3 show a sharp feature at a wavelength of 13.55 µm and comparable in width to that observed near oxygen-rich AGB stars. Our finding that α-Al2O3 nucleates under certain condition provides a solid basis to elaborate condensation models of dust around oxygen-rich evolved stars.

6.
Sci Adv ; 3(1): e1601992, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28116359

RESUMO

The abundant forms in which the major elements in the universe exist have been determined from numerous astronomical observations and meteoritic analyses. Iron (Fe) is an exception, in that only depletion of gaseous Fe has been detected in the interstellar medium, suggesting that Fe is condensed into a solid, possibly the astronomically invisible metal. To determine the primary form of Fe, we replicated the formation of Fe grains in gaseous ejecta of evolved stars by means of microgravity experiments. We found that the sticking probability for the formation of Fe grains is extremely small; only a few atoms will stick per hundred thousand collisions so that homogeneous nucleation of metallic Fe grains is highly ineffective, even in the Fe-rich ejecta of type Ia supernovae. This implies that most Fe is locked up as grains of Fe compounds or as impurities accreted onto other grains in the interstellar medium.

7.
NPJ Microgravity ; 2: 16026, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28725736

RESUMO

InGaSb ternary alloys were grown from GaSb (111)A and B faces (Ga and Sb faces) under microgravity conditions on board the International Space Station by a vertical gradient freezing method. The dissolution process of the Ga and Sb faces of GaSb and orientation-dependent growth properties of InGaSb were analysed. The dissolution of GaSb(111)B was greater than that of (111)A, which was found from the remaining undissolved seed and feed crystals. The higher dissolution of the Sb face was explained based on the number of atoms at that face, and its bonding with the next atomic layer. The growth interface shape was almost flat in both cases. The indium composition in both InGaSb samples was uniform in the radial direction and it gradually decreased along the growth direction because of segregation. The growth rate of InGaSb from GaSb (111)B was found to be higher than that of GaSb (111)A because of the higher dissolution of GaSb (111)B.

8.
Rev Sci Instrum ; 81(7): 073708, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20687732

RESUMO

In this study, a real-time optical system was developed to observe crystallization in a small spherical melt droplet (few millimeters in diameter) by containerless processing. This system can be used to simultaneously observe the inside and the surface of a transparent melt droplet, as well as its ambient gas atmosphere at high temperatures. A silicate melt with a diameter of approximately 2 mm and a composition of MgO:SiO(2)=48:52 was levitated using a gas-jet levitation system, and its crystallization process was successfully observed from 2385 K in real time with good contrast using the developed optical setup.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA