Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Neuron ; 112(11): 1848-1861.e4, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492575

RESUMO

Whisker stimulation in awake mice evokes transient suppression of simple spike probability in crus I/II Purkinje cells. Here, we investigated how simple spike suppression arises synaptically, what it encodes, and how it affects cerebellar output. In vitro, monosynaptic parallel fiber (PF)-excitatory postsynaptic currents (EPSCs) facilitated strongly, whereas disynaptic inhibitory postsynaptic currents (IPSCs) remained stable, maximizing relative inhibitory strength at the onset of PF activity. Short-term plasticity thus favors the inhibition of Purkinje spikes before PFs facilitate. In vivo, whisker stimulation evoked a 2-6 ms synchronous spike suppression, just 6-8 ms (∼4 synaptic delays) after sensory onset, whereas active whisker movements elicited broadly timed spike rate increases that did not modulate sensory-evoked suppression. Firing in the cerebellar nuclei (CbN) inversely correlated with disinhibition from sensory-evoked simple spike suppressions but was decoupled from slow, non-synchronous movement-associated elevations of Purkinje firing rates. Synchrony thus allows the CbN to high-pass filter Purkinje inputs, facilitating sensory-evoked cerebellar outputs that can drive movements.


Assuntos
Potenciais de Ação , Núcleos Cerebelares , Células de Purkinje , Sinapses , Animais , Células de Purkinje/fisiologia , Núcleos Cerebelares/fisiologia , Núcleos Cerebelares/citologia , Camundongos , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Vibrissas/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino
2.
World Neurosurg ; 182: e486-e492, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042289

RESUMO

BACKGROUND: Stereoelectroencephalography (SEEG) remains critical in guiding epilepsy surgery. Robot-assisted techniques have shown promise in improving SEEG implantation outcomes but have not been directly compared. In this single-institution series, we compared ROSA and Stealth AutoGuide robots in pediatric SEEG implantation. METHODS: We retrospectively reviewed 21 sequential pediatric SEEG implantations consisting of 6 ROSA and 15 AutoGuide procedures. We determined mean operative time, time per electrode, root mean square (RMS) registration error, and surgical complications. Three-dimensional radial distances were calculated between each electrode's measured entry and target points with respective errors from the planned trajectory line. RESULTS: Mean overall/per electrode operating time was 73.5/7.5 minutes for ROSA and 126.1/10.9 minutes for AutoGuide (P = 0.030 overall, P = 0.082 per electrode). Mean RMS registration error was 0.77 mm (0.55-0.93 mm) for ROSA and 0.6 mm (0.2-1.0 mm) for AutoGuide (P = 0.26). No procedures experienced complications. The mean radial (entry point error was 1.23 ± 0.11 mm for ROSA and 2.65 ± 0.12 mm for AutoGuide (P < 0.001), while the mean radial target point error was 1.86 ± 0.15 mm for ROSA and 3.25 ± 0.16 mm for AutoGuide (P < 0.001). CONCLUSIONS: Overall operative time was greater for AutoGuide procedures, although there was no statistically significant difference in time per electrode. Both systems are highly accurate with no significant RMS error difference. While the ROSA robot yielded significantly lower entry and target point errors, both robots are safe and reliable for deep electrode insertion in pediatric epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Procedimentos Cirúrgicos Robóticos , Criança , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Estudos Retrospectivos , Eletroencefalografia/métodos , Técnicas Estereotáxicas , Epilepsia/cirurgia , Eletrodos Implantados , Epilepsia Resistente a Medicamentos/cirurgia
3.
Biophys J ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38130058

RESUMO

Discovered just over 25 years ago in cerebellar Purkinje neurons, resurgent Na current was originally described operationally as a component of voltage-gated Na current that flows upon repolarization from relatively depolarized potentials and speeds recovery from inactivation, increasing excitability. Its presence in many excitable cells and absence from others has raised questions regarding its biophysical and molecular mechanisms. Early studies proposed that Na channels capable of generating resurgent current are subject to a rapid open-channel block by an endogenous blocking protein, which binds upon depolarization and unblocks upon repolarization. Since the time that this mechanism was suggested, many physiological and structural studies of both Na and K channels have revealed aspects of gating and conformational states that provide insights into resurgent current. These include descriptions of domain movements for activation and inactivation, solution of cryo-EM structures with pore-blocking compounds, and identification of native blocking domains, proteins, and modulatory subunits. Such results not only allow the open-channel block hypothesis to be refined but also link it more clearly to research that preceded it. This review considers possible mechanisms for resurgent Na current in the context of earlier and later studies of ion channels and suggests a framework for future research.

4.
J Physiol ; 601(23): 5147-5164, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837315

RESUMO

Many neurons that fire high-frequency action potentials express specialized voltage-gated Na channel complexes that not only conduct transient current upon depolarization, but also pass resurgent current upon repolarization. The resurgent current is associated with recovery of transient current, even at moderately negative potentials where fast inactivation is usually absorbing. The combined results of many experimental studies have led to the hypothesis that resurgent current flows upon repolarization when an endogenous blocking protein that occludes open channels at depolarized potentials is expelled by inwardly permeating Na ions. Additional observations have suggested that the position of the voltage sensor of domain IV regulates the affinity of the channel for the putative blocker. To test the effectiveness of a kinetic scheme incorporating these features, here we develop and justify a Markov model with states grounded in known Na channel conformations. Simulations were designed to investigate whether including a permeation-dependent unblocking rate constant and two open-blocked states, superimposed on conformations and voltage-sensitive movements present in all voltage-gated Na channels, is sufficient to account for the unusual gating of channels with a resurgent component. Optimizing rate constant parameters against a wide range of experimental data from cerebellar Purkinje cells demonstrates that a kinetic scheme for Na channels incorporating the novel aspects of a permeation-dependent unblock, as well as distinct high- and low-affinity blocked states, reproduces all the attributes of experimentally recorded Na currents in a physiologically plausible manner.


Assuntos
Células de Purkinje , Canais de Sódio , Canais de Sódio/metabolismo , Células de Purkinje/fisiologia , Neurônios/fisiologia , Potenciais de Ação
5.
Curr Biol ; 33(16): 3299-3311.e3, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37421952

RESUMO

The cerebellum regulates both reflexive and acquired movements. Here, by recording voltage-clamped synaptic currents and spiking in cerebellar output (eurydendroid) neurons in immobilized larval zebrafish, we investigated synaptic integration during reflexive movements and throughout associative motor learning. Spiking coincides with the onset of reflexive fictive swimming but precedes learned swimming, suggesting that eurydendroid signals may facilitate the initiation of acquired movements. Although firing rates increase during swimming, mean synaptic inhibition greatly exceeds mean excitation, indicating that learned responses cannot result solely from changes in synaptic weight or upstream excitability that favor excitation. Estimates of spike threshold crossings based on measurements of intrinsic properties and the time course of synaptic currents demonstrate that noisy excitation can transiently outweigh noisy inhibition enough to increase firing rates at swimming onset. Thus, the millisecond-scale variance of synaptic currents can regulate cerebellar output, and the emergence of learned cerebellar behaviors may involve a time-based code.


Assuntos
Neurônios , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Potenciais de Ação/fisiologia , Larva , Neurônios/fisiologia , Cerebelo/fisiologia
6.
Int J Clin Pediatr Dent ; 16(2): 321-326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519964

RESUMO

Introduction: Eruption of first primary teeth is a normal physiological process. Antenatal nutritional deficiency and prenatal and neonatal factors play an important role in eruption of primary teeth. Neonatal factors, such as gestational age (GA), degree of prematurity, severity of neonatal illness, and birth weight are primarily related to eruption of primary teeth. The relation between neonatal factors and the timing of eruption of primary teeth has not been studied prospectively among Indian preterm infants. Aims: To evaluate the influence of neonatal factors on the eruption of primary teeth in children born preterm. Materials and methods: A prospective longitudinal cohort study design was adopted. A total of 150 subjects were recruited by simple random sampling. Each child was followed up from birth up to 36 months. Intraoral examination was done and the teeth present in each visit were recorded. Data were statistically analyzed and interpreted. Statistical analysis used: Descriptive statistics, t-tests for independent sample, and Pearson's chi-squared tests were applied. Tooth showing statistically significant difference in mean age of eruption between term and preterm categories was studied for the effect of maternal and neonatal characteristics on eruption using multivariate regression analysis. Results: The mandibular central incisor was the first tooth to erupt. Significant determinant of eruption of mandibular incisor in term children was found to be parity, weight for GA, and complementary feeding, whereas for preterm children, significant determinants were parity, birth weight birth length, weight for GA, and complementary feeding. Conclusion: Neonatal factors, such as birth weight, birth length, weight for GA, and introduction of complementary feeding have a strong significant association with the eruption of primary teeth. Clinical significance: The findings of this study will guide in the preventive management of oral health in preterm children. How to cite this article: Indira MD, Nandlal B, Narayanappa D, et al. Effect of Neonatal Factors on the Eruption of Primary Teeth in Children: A Longitudinal Prospective Cohort Study. Int J Clin Pediatr Dent 2023;16(2):321-326.

7.
Clin Toxicol (Phila) ; 60(11): 1214-1219, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36263906

RESUMO

Introduction: We assessed the effect of the pesticide regulations implemented in 2011 on suicide trend in Kerala state of India.Materials and methods: Data were collected from case records of suicide autopsies done in a single tertiary care hospital in Thrissur district of Kerala in 2001-2020. Linear trends in overall suicide rates were identified using joinpoint regression analysis. We used Poisson regression models to estimate the annual expected number of suicides in 2011-2020 and calculated the rate ratios between the observed number of suicide and that expected according to the linear pre-ban suicide trend (2005-2010).Results: There were a total of 14,593 suicide autopsies (2501 pesticide autopsies) in 2001-2020. Carbofuran was the commonest pesticide identified, followed by quinalphos, zinc phosphide, and chlorpyrifos. In 2011-2020, overall suicide rates were 22%-48% and pesticide suicide rates were 20%-55% lower than those expected according to pre-ban suicide trends (2005-2010), with the only exception of a 16% higher-than-expected pesticide suicide rate in 2011. There was no change in trend in hanging suicides.Conclusion: Lower-than-expected overall and pesticide suicide rates were found in Thrissur district after the 2011 bans of pesticides in Kerala, with no evidence of means replacement to hanging.


Assuntos
Carbofurano , Clorpirifos , Praguicidas , Suicídio , Humanos , Centros de Atenção Terciária
8.
Proc Natl Acad Sci U S A ; 119(41): e2209699119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191236

RESUMO

Fungi and bacteria often engage in complex interactions, such as the formation of multicellular biofilms within the human body. Knowledge about how interkingdom biofilms initiate and coalesce into higher-level communities and which functions the different species carry out during biofilm formation remain limited. We found native-state assemblages of Candida albicans (fungi) and Streptococcus mutans (bacteria) with highly structured arrangement in saliva from diseased patients with childhood tooth decay. Further analyses revealed that bacterial clusters are attached within a network of fungal yeasts, hyphae, and exopolysaccharides, which bind to surfaces as a preassembled cell group. The interkingdom assemblages exhibit emergent functions, including enhanced surface colonization and growth rate, stronger tolerance to antimicrobials, and improved shear resistance, compared to either species alone. Notably, we discovered that the interkingdom assemblages display a unique form of migratory spatial mobility that enables fast spreading of biofilms across surfaces and causes enhanced, more extensive tooth decay. Using mutants, selective inactivation of species, and selective matrix removal, we demonstrate that the enhanced stress resistance and surface mobility arise from the exopolymeric matrix and require the presence of both species in the assemblage. The mobility is directed by fungal filamentation as hyphae extend and contact the surface, lifting the assemblage with a "forward-leaping motion." Bacterial cell clusters can "hitchhike" on this mobile unit while continuously growing, to spread across the surface three-dimensionally and merge with other assemblages, promoting community expansion. Together, our results reveal an interkingdom assemblage in human saliva that behaves like a supraorganism, with disease-causing emergent functionalities that cannot be achieved without coassembly.


Assuntos
Biofilmes , Saliva , Streptococcus mutans , Candida albicans/metabolismo , Criança , Doença , Humanos , Hifas/fisiologia , Dinâmica Populacional , Saliva/microbiologia
9.
Int J Clin Pediatr Dent ; 15(4): 412-416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36875970

RESUMO

Aim: The aim of this in vitro study was to evaluate and compare the adhesive bond strength of conventional glass ionomer cement (GIC) and Cention N to the primary enamel and dentin using an accelerated fatigue test. Materials and methods: A total of 30 sound human primary molars were collected and were mounted on a metal cylindrical block using acrylic resin, embedding the root up to cemento-enamel junction (CEJ). Proximal box was prepared on both mesial and distal surfaces, one of the cavity was restored with GIC (Type 9) and the other proximal cavity with Cention N. A nonretentive cavity design was followed for both the materials so as to maintain the uniformity between the two specimens were then placed under a universal testing machine (Instron) and subjected to accelerated cyclic loads till a separation fracture occurs at the tooth-restoration interface. The number of endured cycles a particular restoration could withstand before getting fractured was registered. Results: Cention N resisted significantly more number of endured cycles before separation from the cavity as compared to GIC (p < 0.001). Conclusion: Within the limitations of the study, it can be concluded that newly developed material Cention N is preferred alternative over conventional GIC for the restoration of proximal cavities in primary molars. How to cite this article: Dhull KS, Dutta B, Pattnaik S, et al. Comparative Evaluation of Adhesive Bond Strength of Conventional GIC and Cention N to Enamel and Dentin of Primary Teeth: An In Vitro Study. Int J Clin Pediatr Dent 2022;15(4):412-416.

10.
J Neurophysiol ; 126(3): 763-776, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346760

RESUMO

Cerebellar Purkinje neurons help compute absolute subsecond timing, but how their firing is affected during repetitive sensory stimulation with consistent subsecond intervals remains unaddressed. Here, we investigated how simple and complex spikes of Purkinje cells change during regular application of air puffs (3.3 Hz for ∼4 min) to the whisker pad of awake, head-fixed female mice. Complex spike responses fell into two categories: those in which firing rates increased (at ∼50 ms) and then fell [complex spike elevated (CxSE) cells] and those in which firing rates decreased (at ∼70 ms) and then rose [complex spike reduced (CxSR) cells]. Both groups had indistinguishable rates of basal complex (∼1.7 Hz) and simple (∼75 Hz) spikes and initially responded to puffs with a well-timed sensory response, consisting of a short-latency (∼15 ms), transient (4 ms) suppression of simple spikes. CxSE more than CxSR cells, however, also showed a longer-latency increase in simple spike rate, previously shown to reflect motor command signals. With repeated puffs, basal simple spike rates dropped greatly in CxSR but not CxSE cells; complex spike rates remained constant, but their temporal precision rose in CxSR cells and fell in CxSE cells. Also over time, transient simple spike suppression gradually disappeared in CxSE cells, suggesting habituation, but remained stable in CxSR cells, suggesting reliable transmission of sensory stimuli. During stimulus omissions, both categories of cells showed complex spike suppression with different latencies. The data indicate two modes by which Purkinje cells transmit regular repetitive stimuli, distinguishable by their climbing fiber signals.NEW & NOTEWORTHY Responses of cerebellar Purkinje cells in awake mice form two categories defined by complex spiking during regular trains of brief, somatosensory stimuli. Cells in which complex spike probability first increases or decreases show simple spike suppressions that habituate or persist, respectively. Stimulus omissions alter complex spiking. The results provide evidence for differential suppression of olivary cells during sensory stimulation and omissions and illustrate that climbing fiber innervation defines Purkinje cell responses to repetitive stimuli.


Assuntos
Potenciais de Ação , Potenciais Somatossensoriais Evocados , Células de Purkinje/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Tempo de Reação
11.
Sci Rep ; 11(1): 12837, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145318

RESUMO

HLA class II (HLA-II) genes' polymorphism influences the immune response to Chlamydia trachomatis (Ct), it is considered a sexually transmitted infection. However, associations between HLA-II alleles and Ct-infection have been little explored in humans; this study was thus aimed at determining HLA-DRB1-DQB1 alleles/haplotypes' effect on Ct-infection outcome in a cohort of Colombian women. Cervical sample DNA was used as template for detecting Ct by PCR and typing HLA-DRB1-DQB1 alleles/haplotypes by Illumina MiSeq sequencing. Survival models were adjusted for identifying the alleles/haplotypes' effect on Ct-outcome; bioinformatics tools were used for predicting secreted bacterial protein T- and B-cell epitopes. Sixteen HLA-DRB1 alleles having a significant effect on Ct-outcome were identified in the 262 women analysed. DRB1*08:02:01G and DRB1*12:01:01G were related to infection-promoting events. Only the DQB1*05:03:01G allele related to clearance/persistence events was found for HLA-DQB1. HLA-DRB1 allele homozygous women were associated with events having a lower probability of clearance and/or early occurrence of persistence. Twenty-seven peptides predicted in silico were associated with protective immunity against Ct; outer membrane and polymorphic membrane protein-derived peptides had regions having dual potential for being T- or B-cell epitopes. This article describes HLA-DRB1-DQB1 alleles/haplotypes related to Ct-infection resolution and the peptides predicted in silico which might probably be involved in host immune response. The data provides base information for developing future studies leading to the development of effective prevention measures against Ct-infection.


Assuntos
Alelos , Infecções por Chlamydia/etiologia , Chlamydia trachomatis , Predisposição Genética para Doença , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Peptídeos/genética , Adulto , Sequência de Aminoácidos , Mapeamento de Epitopos , Epitopos , Feminino , Frequência do Gene , Cadeias beta de HLA-DQ/química , Cadeias HLA-DRB1/química , Haplótipos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Adulto Jovem
12.
Front Nutr ; 8: 813851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155529

RESUMO

BACKGROUND: Higher potato intake, especially French fries, was unfavorably associated with cardiometabolic endpoints in population-based studies. Little is known about this in patients with ischemic heart disease (IHD). OBJECTIVE: Total and boiled potatoes and French fries intake were examined in relation to cardiovascular disease (CVD) mortality, all-cause mortality, and type 2 diabetes mellitus (T2DM) risk in Dutch post-myocardial infarction (MI) patients of the Alpha Omega Cohort. METHODS: We analyzed 3,401 patients (60-80 years, 78% male), free from T2DM at baseline, with an MI ≤ 10 years before enrolment. Diet was assessed at baseline (2002-2006) using a 203-item validated Food Frequency Questionnaire (FFQ) that includes potato preparation methods. Cause-specific mortality was monitored through December 2018, and T2DM incidence (self-reported physician diagnosis and/or prescribed anti-diabetes medication) was monitored during the first 40 months of follow-up. Multivariable Cox models were used to obtain hazard ratios (HRs) for fatal endpoints and incident T2DM in tertiles of potato intake. RESULTS: Patients had a median total potato intake (mainly boiled) of 111 g/d, 96% consumed >1 serving (200 g) per week. French fries were consumed by 48% of the patients (median of 6 g/d among consumers). During >12 years of follow-up (38,987 person-years), 1,476 deaths occurred of which 641 were from CVD, 394 were from IHD, and 119 were from a stroke. Total and boiled potatoes were not associated with CVD mortality, but a higher risk of all-cause mortality was observed (HR: 1.07; 95% CI: 1.01, 1.14; per 50 g/d). Potato consumption tended to be positively associated with incident T2DM (186 cases; HR: 1.11, 95% CI: 0.94, 1.32; per 50 g/d). Results for French fries were inconsistent for all outcomes. CONCLUSION: In Dutch post-MI patients, potatoes (mainly boiled) were not associated with CVD mortality but possibly adversely associated with all-cause mortality and T2DM risk. These findings warrant confirmation in other IHD patient cohorts. The Alpha Omega Cohort is registered at ClinicalTrials.gov as NCT03192410.

13.
Inform Med Unlocked ; 19: 100345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32395606

RESUMO

The aim of this study was to develop an appropriate anti-viral drug against the SARS-CoV-2 virus. An immediately qualifying strategy would be to use existing powerful drugs from various virus treatments. The strategy in virtual screening of antiviral databases for possible therapeutic effect would be to identify promising drug molecules, as there is currently no vaccine or treatment approved against COVID-19. Targeting the main protease (pdb id: 6LU7) is gaining importance in anti-CoV drug design. In this conceptual context, an attempt has been made to suggest an in silico computational relationship between US-FDA approved drugs, plant-derived natural drugs, and Coronavirus main protease (6LU7) protein. The evaluation of results was made based on Glide (Schrödinger) dock score. Out of 62 screened compounds, the best docking scores with the targets were found for compounds: lopinavir, amodiaquine, and theaflavin digallate (TFDG). Molecular dynamic (MD) simulation study was also performed for 20 ns to confirm the stability behaviour of the main protease and inhibitor complexes. The MD simulation study validated the stability of three compounds in the protein binding pocket as potent binders.

14.
Elife ; 92020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32127131

RESUMO

There is a pressing need to increase the rigor of research in the life and biomedical sciences. To address this issue, we propose that communities of 'rigor champions' be established to campaign for reforms of the research culture that has led to shortcomings in rigor. These communities of rigor champions would also assist in the development and adoption of a comprehensive educational platform that would teach the principles of rigorous science to researchers at all career stages.


Assuntos
Pesquisa Biomédica/educação , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Projetos de Pesquisa/normas , Humanos
15.
Elife ; 92020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32207681

RESUMO

Innate defensive behaviors, such as freezing, are adaptive for avoiding predation. Freezing-related midbrain regions project to the cerebellum, which is known to regulate rapid sensorimotor integration, raising the question of cerebellar contributions to freezing. Here, we find that neurons of the mouse medial (fastigial) cerebellar nuclei (mCbN), which fire spontaneously with wide dynamic ranges, send glutamatergic projections to the ventrolateral periaqueductal gray (vlPAG), which contains diverse cell types. In freely moving mice, optogenetically stimulating glutamatergic vlPAG neurons that express Chx10 reliably induces freezing. In vlPAG slices, mCbN terminals excite ~20% of neurons positive for Chx10 or GAD2 and ~70% of dopaminergic TH-positive neurons. Stimulating either mCbN afferents or TH neurons augments IPSCs and suppresses EPSCs in Chx10 neurons by activating postsynaptic D2 receptors. The results suggest that mCbN activity regulates dopaminergic modulation of the vlPAG, favoring inhibition of Chx10 neurons. Suppression of cerebellar output may therefore facilitate freezing.


Assuntos
Cerebelo/fisiologia , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Sinapses/fisiologia , Animais , Comportamento Animal , Feminino , Reação de Congelamento Cataléptica , Proteínas de Homeodomínio/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Receptores Dopaminérgicos/fisiologia , Reflexo de Sobressalto , Potenciais Sinápticos , Fatores de Transcrição/fisiologia
16.
J Neurosci ; 40(15): 3063-3074, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32139583

RESUMO

The cerebellum influences motor control through Purkinje target neurons, which transmit cerebellar output. Such output is required, for instance, for larval zebrafish to learn conditioned fictive swimming. The output cells, called eurydendroid neurons (ENs) in teleost fish, are inhibited by Purkinje cells and excited by parallel fibers. Here, we investigated the electrophysiological properties of glutamatergic ENs labeled by the transcription factor olig2. Action potential firing and synaptic responses were recorded in current clamp and voltage clamp from olig2+ neurons in immobilized larval zebrafish (before sexual differentiation) and were correlated with motor behavior by simultaneous recording of fictive swimming. In the absence of swimming, olig2+ ENs had basal firing rates near 8 spikes/s, and EPSCs and IPSCs were evident. Comparing Purkinje firing rates and eurydendroid IPSC rates indicated that 1-3 Purkinje cells converge onto each EN. Optogenetically suppressing Purkinje simple spikes, while preserving complex spikes, suggested that eurydendroid IPSC size depended on presynaptic spike duration rather than amplitude. During swimming, EPSC and IPSC rates increased. Total excitatory and inhibitory currents during sensory-evoked swimming were both more than double those during spontaneous swimming. During both spontaneous and sensory-evoked swimming, the total inhibitory current was more than threefold larger than the excitatory current. Firing rates of ENs nevertheless increased, suggesting that the relative timing of IPSCs and EPSCs may permit excitation to drive additional eurydendroid spikes. The data indicate that olig2+ cells are ENs whose activity is modulated with locomotion, suiting them to participate in sensorimotor integration associated with cerebellum-dependent learning.SIGNIFICANCE STATEMENT The cerebellum contributes to movements through signals generated by cerebellar output neurons, called eurydendroid neurons (ENs) in fish (cerebellar nuclei in mammals). ENs receive sensory and motor signals from excitatory parallel fibers and inhibitory Purkinje cells. Here, we report electrophysiological recordings from ENs of larval zebrafish that directly illustrate how synaptic inhibition and excitation are integrated by cerebellar output neurons in association with motor behavior. The results demonstrate that inhibitory and excitatory drive both increase during fictive swimming, but inhibition greatly exceeds excitation. Firing rates nevertheless increase, providing evidence that synaptic integration promotes cerebellar output during locomotion. The data offer a basis for comparing aspects of cerebellar coding that are conserved and that diverge across vertebrates.


Assuntos
Cerebelo/fisiologia , Neurônios/fisiologia , Fator de Transcrição 2 de Oligodendrócitos/fisiologia , Natação/fisiologia , Sinapses/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Geneticamente Modificados , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Larva , Optogenética , Técnicas de Patch-Clamp , Células de Purkinje/fisiologia
17.
Brain Behav Immun Health ; 2: 100024, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377424

RESUMO

Alcohol abuse affects several neurological pathways and causes significant alterations in the brain. Abstention from alcohol is an effective intervention against alcohol related diseases. But the recovery of the damaged cells to normal presents a major problem in those who have stopped alcohol consumption. Hence therapeutic interventions are needed. Our previous studies have shown that all trans retinoic acid (ATRA) is effective in reducing alcohol induced neuro toxicity. Chronic alcohol administration up-regulates and activates the NLRP3 inflammasome leading to caspase-1 activation and IL-1ß production causing neuroinflammation. Hence, we investigated whether ATRA has any impact on NLRP3 inflammasomes activation. Rats were divided into two groups and were maintained for 90 days as control and ethanol group (4 â€‹g/kg body weight). After 90 days, ethanol administration was stopped and animals in the control group were divided into control and control â€‹+ â€‹ATRA (100 â€‹µg/kg body weight per day) groups; those in the ethanol group as ethanol abstention and ATRA (100 â€‹µg/kg body weight per day) and maintained for 30 days. Administration of ATRA reduced reactive oxygen species and endotoxins which were elevated in alcoholic rats. There was also reduction in the expression of NLRP3 inflammasome and caspase 1. Our results suggested ATRA down regulated NLRP3 activation with concomitant decrease in the release of caspase -1 and production of IL1ß. However, all these parameters were higher in abstention in comparison with ATRA supplemented group. In short therapeutic intervention with ATRA regressed alcohol induced inflammasome activation better than abstention.

18.
Elife ; 82019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31573511

RESUMO

After acknowledging that power differentials exist, can scientists find inspiration to persevere anyway?


Assuntos
Poder Psicológico , Pesquisadores/psicologia , Fatores Sexuais
19.
J Gen Physiol ; 151(11): 1300-1318, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31558566

RESUMO

Voltage-gated Na channels of Purkinje cells are specialized to maintain high availability during high-frequency repetitive firing. They enter fast-inactivated states relatively slowly and undergo a voltage-dependent open-channel block by an intracellular protein (or proteins) that prevents stable fast inactivation and generates resurgent Na current. These properties depend on the pore-forming α subunits, as well as modulatory subunits within the Na channel complex. The identity of the factors responsible for open-channel block remains a question. Here we investigate the effects of genetic mutation of two Na channel auxiliary subunits highly expressed in Purkinje cells, NaVß4 and FGF14, on modulating Na channel blocked as well as inactivated states. We find that although both NaVß4 and the FGF14 splice variant FGF14-1a contain sequences that can generate resurgent-like currents when applied to Na channels in peptide form, deletion of either protein, or both proteins simultaneously, does not eliminate resurgent current in acutely dissociated Purkinje cell bodies. Loss of FGF14 expression does, however, reduce resurgent current amplitude and leads to an acceleration and stabilization of inactivation that is not reversed by application of the site-3 toxin, anemone toxin II (ATX). Tetrodotoxin (TTX) sensitivity is higher for resurgent than transient components of Na current, and loss of FGF14 preferentially affects a highly TTX-sensitive subset of Purkinje α subunits. The data suggest that NaV1.6 channels, which are known to generate the majority of Purkinje cell resurgent current, bind TTX with high affinity and are modulated by FGF14 to facilitate open-channel block.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Células de Purkinje/fisiologia , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/metabolismo , Animais , Fenômenos Eletrofisiológicos , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Sódio/metabolismo , Tetrodotoxina/farmacologia , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/genética
20.
3 Biotech ; 9(8): 306, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31355115

RESUMO

The bacteria residing in the gut environment do play a pivotal role in metabolic activities of the host. The metabolites produced by these bacteria affect the physiology and health of the host. The gut bacteria are exposed to environmental conditions where multiple factors such as lifestyle, stress, antibiotics, host genetics and infections have an influence on them. In case of pathogenesis of a disease, the gut bacterial composition is altered which leads to a diseased state. This stage is due to colonization of bacterial pathogens in the gut environment. The pathological condition can be alleviated by administering probiotic strains into the gut environment. The probiotic strains produce therapeutic molecules such as amino acids, vitamins, bacteriocins, enzymes, immunomodulatory compounds and short-chain fatty acids. This review discusses recent evidences of the impact of bioactive molecules produced by probiotic bacteria and their mechanism of action in the gut environment to maintain homeostasis and health of the host without any effect on beneficial bacteria sharing the same niche. In addition, the manufacturing challenges of probiotic products for various applications are discussed here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA