Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
APL Bioeng ; 8(1): 016117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476403

RESUMO

Terahertz (THz) imaging has long held promise for skin cancer detection but has been hampered by the lack of practical technological implementation. In this article, we introduce a technique for discriminating several skin pathologies using a coherent THz confocal system based on a THz quantum cascade laser. High resolution in vivo THz images (with diffraction limited to the order of 100 µm) of several different lesion types were acquired and compared against one another using the amplitude and phase values. Our system successfully separated pathologies using a combination of phase and amplitude information and their respective surface textures. The large scan field (50 × 40 mm) of the system allows macroscopic visualization of several skin lesions in a single frame. Utilizing THz imaging for dermatological assessment of skin lesions offers substantial additional diagnostic value for clinicians. THz images contain information complementary to the information contained in the conventional digital images.

2.
Opt Lett ; 44(13): 3314-3317, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259948

RESUMO

We report on the high detection sensitivity of a laser feedback interferometry scheme based on a terahertz frequency quantum cascade laser (QCL). We show that variations on the laser voltage induced by optical feedback to the laser can be resolved with the reinjection of powers as low as ∼-125 dB of the emitted power. Our measurements demonstrate a noise equivalent power of ∼1.4 pW/√Hz, although, after accounting for the reinjection losses, we estimate that this corresponds to only ∼1 fW/√Hz being coupled to the QCL active region.

3.
Opt Lett ; 40(6): 950-3, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25768154

RESUMO

We demonstrate an active phase-nulling scheme for terahertz (THz) frequency quantum cascade lasers (QCLs) under optical feedback, by active electronic feedback control of the emission frequency. Using this scheme, the frequency tuning rate of a THz QCL is characterized, with significantly reduced experimental complexity compared to alternative approaches. Furthermore, we demonstrate real-time displacement sensing of targets, overcoming the resolution limits imposed by quantization in previously implemented fringe-counting methods. Our approach is readily applicable to high-frequency vibrometry and surface profiling of targets, as well as frequency-stabilization schemes for THz QCLs.

4.
Opt Lett ; 40(6): 994-7, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25768165

RESUMO

We demonstrate coherent three-dimensional terahertz imaging by frequency modulation of a quantum cascade laser in a compact and experimentally simple self-mixing scheme. Through this approach, we can realize significantly faster acquisition rates compared to previous schemes employing longitudinal mechanical scanning of a sample. We achieve a depth resolution of better than 0.1 µm with a power noise spectral density below -50 dB/Hz, for a sampling time of 10 ms/pixel.

5.
Opt Lett ; 39(9): 2629-32, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24784063

RESUMO

We propose a terahertz (THz)-frequency synthetic aperture radar imaging technique based on self-mixing (SM) interferometry, using a quantum cascade laser. A signal processing method is employed which extracts and exploits the radar-related information contained in the SM signals, enabling the creation of THz images with improved spatial resolution. We demonstrate this by imaging a standard resolution test target, achieving resolution beyond the diffraction limit.

7.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA