Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338568

RESUMO

The potential of hyperspectral imaging (HSI) and synchrotron phase-contrast micro computed tomography (SR-µCT) was evaluated to determine changes in chickpea quality during storage. Chickpea samples were stored for 16 wk at different combinations of moisture contents (MC of 9%, 11%, 13%, and 15% wet basis) and temperatures (10 °C, 20 °C, and 30 °C). Hyperspectral imaging was utilized to investigate the overall quality deterioration, and SR-µCT was used to study the microstructural changes during storage. Principal component analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) were used as multivariate data analysis approaches for HSI data. Principal component analysis successfully grouped the samples based on relative humidity (RH) and storage temperatures, and the PLS-DA classification also resulted in reliable accuracy (between 80 and 99%) for RH-based and temperature-based classification. The SR-µCT results revealed that microstructural changes in kernels (9% and 15% MC) were dominant at higher temperatures (above 20 °C) as compared to lower temperatures (10 °C) during storage due to accelerated spoilage at higher temperatures (above 20 °C). Chickpeas which had internal irregularities like cracked endosperm and air spaces before storage were spoiled at lower moisture from 8 wk of storage.

2.
Heliyon ; 9(11): e22139, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045167

RESUMO

Synchrotron X-ray imaging and spectroscopy techniques were used for studying changes during post-harvest storage of food grains. Three varieties (AAC Spitfire, CDC Defy, and AAC Stronghold) of the Canada Western Amber Durum (CWAD) wheat class were stored for five weeks at 17 % moisture content (wb). Control (dry) and stored moistened seeds were analyzed for biochemical and nutritional changes using synchrotron bulk X-ray fluorescence spectroscopy (SR-XRF), X-ray fluorescence imaging (SR-XFI), and mid-infrared (mid-IR) spectroscopy at the Canadian Light Source (CLS), Saskatoon, SK. All varieties of durum wheat were spoiled at the end of five week, and AAC Spitfire and CDC Defy varieties were most affected in nutritional composition and their distribution than AAC Stronghold. Variable response to changes in biochemical and nutrition were found in all three spoiled varieties of the same durum wheat class.

3.
Foods ; 12(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959054

RESUMO

Four varieties of barley (Esma, AC Metacalf, Tradition, and AB Cattlelac), representing four Canadian barley classes, were stored at 17% moisture content (mc) for 8 week. Stored barely was characterized using synchrotron X-ray phase contrast microcomputed tomography, synchrotron X-ray fluorescence imaging, and mid-infrared spectroscopy at the Canadian Light Source, Saskatoon. The deterioration was observed in all the selected varieties of barley at the end of 8 week of storage. Changes due to spoilage over time were observed in the grain microstructure and its nutrient distribution and composition. This study underscores the critical importance of the initial condition of barley grain microstructure in determining its storage life, particularly under unfavorable conditions. The hulled barley varieties showed more deterioration in microstructure than the hulless varieties of barley, where a direct correlation between microstructural changes and alterations in nutritional content was found. All selected barley classes showed changes in the distribution of nutrients (Ca, Fe, K, Mn, Cu, and Zn), but the two-row AC Metcalf variety exhibited more substantial variations in their nutrient distribution (Zn and Mn) than the other three varieties during storage. The two-row class barley varieties showed more changes in biochemical components (protein, lipids, and carbohydrates) than the six-row class varieties.

4.
Plant Methods ; 18(1): 101, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964094

RESUMO

Synchrotron imaging is widely used for research in many scientific disciplines. This article introduces the characteristics of synchrotron X-ray imaging and its applications in agriculture and food science research. The agriculture and food sector are a vast area that comprises of plants, seeds, animals, food and their products; soils with thriving microbial communities; and natural resources such as water, fertilizers, and organic matter. These entities have unique internal features, structures and compositions which differentiate them from each other in varieties, species, grades, and types. The use of a bright and tuneable monochromatic source of synchrotron imaging techniques enables researchers to study the internal features and compositions of plants, seeds, soil and food in a quick and non-destructive way to enhance their use, conservation and productivity. Synchrotron's different X-ray imaging techniques offer a wide domain of applications, which make them perfect to enhance the understanding of structures of raw and processed food products to promote food safety and security. Therefore, this paper summarizes the results of major experiments carried out with seeds, plants, soil, food and relevant areas of agricultural sciences with more emphasis on two synchrotron X-ray imaging techniques: absorption and phase-contrast imaging and computed tomography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA