Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 53(50): 6712-6715, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28585628

RESUMO

A homogeneous carbene-based palladium catalyst was conjugated to a cell-penetrating peptide, allowing intracellular delivery of catalytically active Pd complexes that demonstrated bioorthogonal activation of a profluorophore within prostate cancer cells.

2.
Angew Chem Int Ed Engl ; 56(24): 6864-6868, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28485835

RESUMO

Transition metals have been successfully applied to catalyze non-natural chemical transformations within living cells, with the highly efficient labeling of subcellular components and the activation of prodrugs. In vivo applications, however, have been scarce, with a need for the specific cellular targeting of the active transition metals. Here, we show the design and application of cancer-targeting palladium catalysts, with their specific uptake in brain cancer (glioblastoma) cells, while maintaining their catalytic activity. In these cells, for the first time, two different anticancer agents were synthesized simultaneously intracellularly, by two totally different mechanisms (in situ synthesis and decaging), enhancing the therapeutic effect of the drugs. Tumor specificity of the catalysts together with their ability to perform simultaneous multiple bioorthogonal transformations will empower the application of in vivo transition metals for drug activation strategies.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Paládio/química , Pró-Fármacos/metabolismo , Pró-Fármacos/uso terapêutico , Neoplasias Encefálicas/metabolismo , Catálise , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Corantes Fluorescentes/química , Glioblastoma/metabolismo , Humanos , Nanopartículas Metálicas/química , Microscopia de Fluorescência , Oligopeptídeos/metabolismo
4.
Curr Opin Chem Biol ; 21: 128-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25108198

RESUMO

Bioorthogonal metal catalysed chemistry is the application of biocompatible transition metals to catalyse conventional synthetic organic chemistry reactions within a biological environment. Over the past decade, metals which were previously restricted to conventional organic synthesis have begun to be used in an increasing number of biological settings. This has been dominated by copper mediated catalysis of the azide-alkyne Huisgen cycloaddition (1,3-dipolar addition) chemistry but other, less toxic, metals such as palladium are now beginning to establish themselves in the chemical biology/chemical medicine arenas. The potential of palladium mediated chemistry in living systems now ranges from protein modifications to in cellulo synthesis or activation of drugs and suggests that palladium chemistry has the potential to become a powerful tool. In this review we highlight recent advances in Pd-mediated reactions in living systems.


Assuntos
Bioquímica/métodos , Paládio/metabolismo , Catálise , Sobrevivência Celular , Humanos
5.
Chem Commun (Camb) ; 48(10): 1428-30, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21479321

RESUMO

A new approach to additions of silicon nucleophiles to imines was developed. The method is based on the phase-transfer of phenoxides by ammonium catalysts, overcoming the inability of amide adducts in promoting the reactions.


Assuntos
Aminas/síntese química , Hidrocarbonetos Fluorados/química , Iminas/química , Compostos de Organossilício/química , Óxidos/química , Compostos de Amônio Quaternário/química , Aminas/química , Catálise , Estrutura Molecular , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA