Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1353353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571939

RESUMO

As severe acute respiratory coronavirus 2 (SARS-CoV-2) variants continue to emerge, it is important to characterize immune responses against variants which can inform on protection efficacies following booster vaccination. In this study, neutralizing breadth and antigen-specific CD8+ T cell responses were analyzed in both infection-naïve and infection-experienced individuals following administration of a booster bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine. Significantly higher neutralizing titers were found after this vaccination compared to the pre-third booster vaccination time point. Further, neutralizing breadth to omicron variants, including BA.1, BA.2, BA.5, BQ.1 and XBB.1, was found to be boosted following bivalent vaccination. SARS-CoV-2-specific CD8+ T cells were identified, but with no evidence that frequencies were increased following booster vaccinations. Spike protein-specific CD8+ T cells were the only responses detected after vaccination and non-spike-specific CD8+ T cells were only detected after infection. Both spike-specific and non-spike-specific CD8+ T cells were found at much lower frequencies than CD8+ T cells specific to cytomegalovirus (CMV), Epstein-Barr virus (EBV) and influenza (Flu). Taken together, these results show that the bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine boosted the breadth of neutralization to newer SARS-CoV-2 variants and that vaccination is able to induce spike protein-specific CD8+ T cell responses, which are maintained longitudinally.


Assuntos
COVID-19 , Infecções por Vírus Epstein-Barr , Adulto , Humanos , Anticorpos Neutralizantes , Vacina BNT162 , Linfócitos T CD8-Positivos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , COVID-19/prevenção & controle , Herpesvirus Humano 4
2.
J Neurotrauma ; 33(22): 1995-1999, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-25621407

RESUMO

The diagnosis of sports-related concussion is mainly based on subjective clinical symptoms and neuropsychological tests. Therefore, reliable brain injury biomarkers to assess when it is safe to return to play are highly desirable. The overall objective of this study was to evaluate the utility of two newly described tau fragments for diagnosis and prognosis of sports-related concussions. This multi-center prospective cohort study involved all 12 teams of the top professional ice hockey league in Sweden. A total of 288 players consented to participate in the study. Thirty-five players sustained concussions, of whom 28 underwent repeated blood samplings at 1, 12, 36, and 144 h after the trauma, or when the player returned to play (7 to >90 days). There was no significant increase in the levels of Tau-A in post-concussion samples compared with preseason values. However, serum levels of Tau-C were significantly higher in post-concussion samples compared with preseason. Further, levels of Tau-A correlated with the duration of post-concussive symptoms. Tau-A in serum, which is newly discovered biomarker, could be used to predict when it is safe to return to play after a sports-related concussion.


Assuntos
Concussão Encefálica/sangue , Concussão Encefálica/diagnóstico , Hóquei/lesões , Hóquei/tendências , Volta ao Esporte/tendências , Proteínas tau/sangue , Biomarcadores/sangue , Concussão Encefálica/epidemiologia , Estudos de Coortes , Humanos , Masculino , Valor Preditivo dos Testes , Estudos Prospectivos , Suécia/epidemiologia
3.
Front Neurol ; 6: 90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029153

RESUMO

The diagnosis of dementia is challenging and early stages are rarely detected limiting the possibilities for early intervention. Another challenge is the overlap in the clinical features across the different dementia types leading to difficulties in the differential diagnosis. Identifying biomarkers that can detect the pre-dementia stage and allow differential diagnosis could provide an opportunity for timely and optimal intervention strategies. Also, such biomarkers could help in selection and inclusion of the right patients in clinical trials of both Alzheimer's disease and other dementia treatment candidates. The cerebrospinal fluid (CSF) has been the most investigated source of biomarkers and several candidate proteins have been identified. However, looking solely at protein levels is too simplistic to provide enough detailed information to differentiate between dementias, as there is a significant crossover between the proteins involved in the different types of dementia. Additionally, CSF sampling makes these biomarkers challenging for presymptomatic identification. We need to focus on disease-specific protein fragmentation to find a fragment pattern unique for each separate dementia type - a form of protein fragmentology. Targeting protein fragments generated by disease-specific combinations of proteins and proteases opposed to detecting the intact protein could reduce the overlap between diagnostic groups as the extent of processing as well as which proteins and proteases constitute the major hallmark of each dementia type differ. In addition, the fragments could be detectable in blood as they may be able to cross the blood-brain barrier due to their smaller size. In this review, the potential of the fragment-based biomarker discovery for dementia diagnosis and prognosis is discussed, especially highlighting how the knowledge from CSF protein biomarkers can be used to guide blood-based biomarker development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA