Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME J ; 17(11): 1808-1818, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37587369

RESUMO

Members of the candidate phylum Dadabacteria, recently reassigned to the phylum Candidatus Desulfobacterota, are cosmopolitan in the marine environment found both free-living and associated with hosts that are mainly marine sponges. Yet, these microorganisms are poorly characterized, with no cultured representatives and an ambiguous phylogenetic position in the tree of life. Here, we performed genome-centric metagenomics to elucidate their phylogenomic placement and predict the metabolism of the sponge-associated members of this lineage. Rank-based phylogenomics revealed several new species and a novel family (Candidatus Spongomicrobiaceae) within a sponge-specific order, named here Candidatus Nemesobacterales. Metabolic reconstruction suggests that Ca. Nemesobacterales are aerobic heterotrophs, capable of synthesizing most amino acids, vitamins and cofactors and degrading complex carbohydrates. We also report functional divergence between sponge- and seawater-associated metagenome-assembled genomes. Niche-specific adaptations to the sponge holobiont were evident from significantly enriched genes involved in defense mechanisms against foreign DNA and environmental stressors, host-symbiont interactions and secondary metabolite production. Fluorescence in situ hybridization gave a first glimpse of the morphology and lifestyle of a member of Ca. Desulfobacterota. Candidatus Nemesobacterales spp. were found both inside sponge cells centred around sponge nuclei and in the mesohyl of the sponge Geodia barretti. This study sheds light on the enigmatic group Ca. Nemesobacterales and their functional characteristics that reflect a symbiotic lifestyle.


Assuntos
Poríferos , Animais , Poríferos/microbiologia , Filogenia , Hibridização in Situ Fluorescente , Bactérias/genética , Metagenoma
2.
J R Soc Interface ; 19(190): 20220181, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35611622

RESUMO

The brightest colours in nature often originate from the interaction of light with materials structured at the nanoscale. Different organisms produce such coloration with a wide variety of materials and architectures. In the case of bacterial colonies, structural colours stem for the periodic organization of the cells within the colony, and while considerable efforts have been spent on elucidating the mechanisms responsible for such coloration, the biochemical processes determining the development of this effect have not been explored. Here, we study the influence of nutrients on the organization of cells from the structurally coloured bacteria Flavobacterium strain IR1. By analysing the optical properties of the colonies grown with and without specific polysaccharides, we found that the highly ordered organization of the cells can be altered by the presence of fucoidans. Additionally, by comparing the organization of the wild-type strain with mutants grown in different nutrient conditions, we deduced that this regulation of cell ordering is linked to a specific region of the IR1 chromosome. This region encodes a mechanism for the uptake and metabolism of polysaccharides, including a polysaccharide utilization locus (PUL operon) that appears specific to fucoidan, providing new insight into the biochemical pathways regulating structural colour in bacteria.


Assuntos
Bactérias , Polissacarídeos , Bactérias/metabolismo , Cor , Polissacarídeos/metabolismo
3.
Nucleic Acids Res ; 49(19): 11392-11404, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614191

RESUMO

CRISPR-Cas is a powerful tool for genome editing in bacteria. However, its efficacy is dependent on host factors (such as DNA repair pathways) and/or exogenous expression of recombinases. In this study, we mitigated these constraints by developing a simple and widely applicable genome engineering tool for bacteria which we termed SIBR-Cas (Self-splicing Intron-Based Riboswitch-Cas). SIBR-Cas was generated from a mutant library of the theophylline-dependent self-splicing T4 td intron that allows for tight and inducible control over CRISPR-Cas counter-selection. This control delays CRISPR-Cas counter-selection, granting more time for the editing event (e.g. by homologous recombination) to occur. Without the use of exogenous recombinases, SIBR-Cas was successfully applied to knock-out several genes in three wild-type bacteria species (Escherichia coli MG1655, Pseudomonas putida KT2440 and Flavobacterium IR1) with poor homologous recombination systems. Compared to other genome engineering tools, SIBR-Cas is simple, tightly regulated and widely applicable for most (non-model) bacteria. Furthermore, we propose that SIBR can have a wider application as a simple gene expression and gene regulation control mechanism for any gene or RNA of interest in bacteria.


Assuntos
Escherichia coli/genética , Flavobacterium/genética , Edição de Genes/métodos , Genoma Bacteriano , Pseudomonas putida/genética , RNA Bacteriano/genética , Pareamento de Bases , Sequência de Bases , Sistemas CRISPR-Cas , Escherichia coli/metabolismo , Flavobacterium/metabolismo , Técnicas de Inativação de Genes/métodos , Recombinação Homóloga , Íntrons , Conformação de Ácido Nucleico , Pseudomonas putida/metabolismo , Splicing de RNA , RNA Bacteriano/metabolismo , Riboswitch
4.
J Fungi (Basel) ; 7(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669274

RESUMO

Structural color occurs by the interaction of light with regular structures and so generates colors by completely different optical mechanisms to dyes and pigments. Structural color is found throughout the tree of life but has not, to date, been reported in the fungi. Here we give an overview of structural color across the tree of life and provide a brief guide aimed at stimulating the search for this phenomenon in fungi.

5.
Mar Drugs ; 19(2)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573261

RESUMO

Marine sponges harbor diverse microbial communities that represent a significant source of natural products. In the present study, extracts of 21 sponge-associated bacteria were screened for their antimicrobial and anticancer activity, and their genomes were mined for secondary metabolite biosynthetic gene clusters (BGCs). Phylogenetic analysis assigned the strains to four major phyla in the sponge microbiome, namely Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Bioassays identified one extract with anti-methicillin-resistant Staphylococcus aureus (MRSA) activity, and more than 70% of the total extracts had a moderate to high cytotoxicity. The most active extracts were derived from the Proteobacteria and Actinobacteria, prominent for producing bioactive substances. The strong bioactivity potential of the aforementioned strains was also evident in the abundance of BGCs, which encoded mainly beta-lactones, bacteriocins, non-ribosomal peptide synthetases (NRPS), terpenes, and siderophores. Gene-trait matching was performed for the most active strains, aiming at linking their biosynthetic potential with the experimental results. Genetic associations were established for the anti-MRSA and cytotoxic phenotypes based on the similarity of the detected BGCs with BGCs encoding natural products with known bioactivity. Overall, our study highlights the significance of combining in vitro and in silico approaches in the search of novel natural products of pharmaceutical interest.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos , Família Multigênica , Poríferos/microbiologia , Animais , Bactérias/genética , Genoma Bacteriano , Filogenia
7.
ISME J ; 14(11): 2890-2900, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32873891

RESUMO

Flavobacterium IR1 is a gliding bacterium with a high degree of colonial organization as a 2D photonic crystal, resulting in vivid structural coloration when illuminated. Enterobacter cloacae B12, an unrelated bacterium, was isolated from the brown macroalga Fucus vesiculosus from the same location as IR1. IR1 was found to be a predator of B12. A process of surrounding, infiltration, undercutting and killing of B12 supported improved growth of IR1. A combination of motility and capillarity facilitated the engulfment of B12 colonies by IR1. Predation was independent of illumination. Mutants of IR1 that formed photonic crystals less effectively than the wild type were reduced in predation. Conversely, formation of a photonic crystal was not advantageous in resisting predation by Rhodococcus spp. PIR4. These observations suggest that the organization required to create structural colour has a biological function (facilitating predation) but one that is not directly related to the photonic properties of the colony. This work is the first experimental evidence supporting a role for this widespread type of cell organization in the Flavobacteriia.


Assuntos
Flavobacterium , Comportamento Predatório , Animais , Cor , Flavobacterium/genética
8.
BMC Genomics ; 21(1): 569, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819293

RESUMO

BACKGROUND: Members of the bacterial family Flavobacteriaceae are widely distributed in the marine environment and often found associated with algae, fish, detritus or marine invertebrates. Yet, little is known about the characteristics that drive their ubiquity in diverse ecological niches. Here, we provide an overview of functional traits common to taxonomically diverse members of the family Flavobacteriaceae from different environmental sources, with a focus on the Marine clade. We include seven newly sequenced marine sponge-derived strains that were also tested for gliding motility and antimicrobial activity. RESULTS: Comparative genomics revealed that genome similarities appeared to be correlated to 16S rRNA gene- and genome-based phylogeny, while differences were mostly associated with nutrient acquisition, such as carbohydrate metabolism and gliding motility. The high frequency and diversity of genes encoding polymer-degrading enzymes, often arranged in polysaccharide utilization loci (PULs), support the capacity of marine Flavobacteriaceae to utilize diverse carbon sources. Homologs of gliding proteins were widespread among all studied Flavobacteriaceae in contrast to members of other phyla, highlighting the particular presence of this feature within the Bacteroidetes. Notably, not all bacteria predicted to glide formed spreading colonies. Genome mining uncovered a diverse secondary metabolite biosynthesis arsenal of Flavobacteriaceae with high prevalence of gene clusters encoding pathways for the production of antimicrobial, antioxidant and cytotoxic compounds. Antimicrobial activity tests showed, however, that the phenotype differed from the genome-derived predictions for the seven tested strains. CONCLUSIONS: Our study elucidates the functional repertoire of marine Flavobacteriaceae and highlights the need to combine genomic and experimental data while using the appropriate stimuli to unlock their uncharted metabolic potential.


Assuntos
Flavobacteriaceae , Animais , Metabolismo dos Carboidratos , DNA Bacteriano , Flavobacteriaceae/genética , Genômica , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
J R Soc Interface ; 17(166): 20200196, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32429826

RESUMO

Vivid colours found in living organisms are often the result of scattering from hierarchical nanostructures, where the interplay between order and disorder in their packing defines visual appearance. In the case of Flavobacterium IR1, the complex arrangement of the cells in polycrystalline three-dimensional lattices is found to be a distinctive fingerprint of colony organization. By combining analytical analysis of the angle-resolved scattering response of in vivo bacterial colonies with numerical modelling, we show that we can assess the inter-cell distance and cell diameter with a resolution below 10 nm, far better than what can be achieved with conventional electron microscopy, suffering from preparation artefacts. Retrieving the role of disorder at different length scales from the salient features in the scattering response enables a precise understanding of the structural organization of the bacteria.


Assuntos
Nanoestruturas , Bactérias
10.
Biotechnol Rep (Amst) ; 20: e00281, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30225207

RESUMO

Microbes are prolific sources of bioactive molecules; however, the cultivability issue has severely hampered access to microbial diversity. Novel secondary metabolites from as-yet-unknown or atypical microorganisms from extreme environments have realistic potential to lead to new drugs with benefits for human health. Here, we used a novel approach that mimics the natural environment by using a Miniaturized Culture Chip allowing the isolation of several bacterial strains from Antarctic shallow water sediments under near natural conditions. A Gram-negative Antarctic bacterium belonging to the genus Aequorivita was subjected to further analyses. The Aequorivita sp. genome was sequenced and a bioinformatic approach was applied to identify biosynthetic gene clusters. The extract of the Aequorivita sp. showed antimicrobial and anthelmintic activity towards Multidrug resistant bacteria and the nematode Caenorhabditis elegans. This is the first multi-approach study exploring the genomics and biotechnological potential of the genus Aequorivita that is a promising candidate for pharmaceutical applications.

11.
Front Microbiol ; 9: 1705, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105010

RESUMO

Our understanding of microbial natural environments combines in situ experimentation with studies of specific interactions in laboratory-based setups. The purpose of this work was to develop, build and demonstrate the use of a microbial culture chamber enabling both in situ and laboratory-based studies. The design uses an enclosed chamber surrounded by two porous membranes that enables the comparison of growth of two separate microbial populations but allowing free exchange of small molecules. Initially, we tested if the presence of the macroalga Fucus vesiculosus inside the chamber affected colonization of the outer membranes by marine bacteria. The alga did indeed enrich the total population of colonizing bacteria by more than a factor of four. These findings lead us to investigate the effect of the presence of the coccolithophoric alga Emiliania huxleyi on attachment and biofilm formation of the marine bacterium Phaeobacter inhibens DSM17395. These organisms co-exist in the marine environment and have a well-characterized interdependence on secondary metabolites. P. inhibens attached in significantly higher numbers when having access to E. huxleyi as compared to when exposed to sterile media. The experiment was carried out using a wild type (wt) strain as well as a TDA-deficient strain of P. inhibens. The ability of the bacterium to produce the antibacterial compound, tropodithietic acid (TDA) influenced its attachment since the P. inhibens DSM17395 wt strain attached in higher numbers to a surface within the first 48 h of incubation with E. huxleyi as compared to a TDA-negative mutant. Whilst the attachment of the bacterium to a surface was facilitated by presence of the alga, however, we cannot conclude if this was directly affected by the algae or whether biofilm formation was dependent on the production of TDA by P. inhibens, which has been implied by previous studies. In the light of these results, other applications of immersed culture chambers are suggested.

12.
Mar Drugs ; 16(6)2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29843452

RESUMO

The combination of LC-MS/MS based metabolomics approach and anti-MRSA activity-guided fractionation scheme was applied on the Gram-negative bacterium Aequorivita sp. isolated from shallow Antarctic sea sediment using a miniaturized culture chip technique. This methodology afforded the isolation of three new (1⁻3) and four known (4⁻7) N-terminal glycine- or serine-bearing iso-fatty acid amides esterified with another iso-fatty acid through their C-3 hydroxy groups. The chemical structures of the new compounds were elucidated using a set of spectroscopic (NMR, [α]D and FT-IR) and spectrometric (HRMS, HRMS/MS) methods. The aminolipids possessing an N-terminal glycine unit (1, 2, 4, 5) showed moderate in vitro antimicrobial activity against MRSA (IC50 values 22⁻145 µg/mL). This is the first in-depth chemistry and biological activity study performed on the microbial genus Aequorivita.


Assuntos
Aminoácidos/isolamento & purificação , Antibacterianos/isolamento & purificação , Ácidos Graxos/isolamento & purificação , Flavobacteriaceae/metabolismo , Aminoácidos/química , Aminoácidos/farmacologia , Regiões Antárticas , Antibacterianos/química , Antibacterianos/farmacologia , Fracionamento Químico/métodos , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Sedimentos Geológicos , Metabolômica/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Água do Mar , Análise de Sequência de DNA , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Proc Natl Acad Sci U S A ; 115(11): 2652-2657, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29472451

RESUMO

Naturally occurring photonic structures are responsible for the bright and vivid coloration in a large variety of living organisms. Despite efforts to understand their biological functions, development, and complex optical response, little is known of the underlying genes involved in the development of these nanostructures in any domain of life. Here, we used Flavobacterium colonies as a model system to demonstrate that genes responsible for gliding motility, cell shape, the stringent response, and tRNA modification contribute to the optical appearance of the colony. By structural and optical analysis, we obtained a detailed correlation of how genetic modifications alter structural color in bacterial colonies. Understanding of genotype and phenotype relations in this system opens the way to genetic engineering of on-demand living optical materials, for use as paints and living sensors.


Assuntos
Flavobacterium/química , Flavobacterium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cor , Flavobacterium/crescimento & desenvolvimento , Flavobacterium/metabolismo , Engenharia Genética , Fótons , Alga Marinha/microbiologia
14.
PLoS One ; 12(12): e0190037, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29284016

RESUMO

Recent experiments with the bacteria Paenibacillus vortex reveal a remarkable strategy enabling it to cope with antibiotics by cooperating with a different bacterium-Escherichia coli. While P. vortex is a highly effective swarmer, it is sensitive to the antibiotic ampicillin. On the other hand, E. coli can degrade ampicillin but is non-motile when grown on high agar percentages. The two bacterial species form a shared colony in which E. coli is transported by P. vortex and E. coli detoxifies the ampicillin. The paper presents a simplified model, consisting of coupled reaction-diffusion equations, describing the development of ring patterns in the shared colony. Our results demonstrate some of the possible cooperative movement strategies bacteria utilize in order to survive harsh conditions. In addition, we explore the behavior of mixed colonies under new conditions such as antibiotic gradients, synchronization between colonies and possible dynamics of a 3-species system including P. vortex, E. coli and a carbon producing algae that provides nutrients under illuminated, nutrient poor conditions. The derived model was able to simulate an asymmetric relationship between two or three micro-organisms where cooperation is required for survival. Computationally, in order to avoid numerical artifacts due to symmetries within the discretizing grid, the model was solved using a second order Vectorizable Random Lattices method, which is developed as a finite volume scheme on a random grid.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Modelos Teóricos
15.
Front Microbiol ; 8: 1269, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769882

RESUMO

Fungi are strongly affected by their physical environment. Microfabrication offers the possibility of creating new culture environments and ecosystems with defined characteristics. Here, we report the isolation of a novel member of the fungal genus Acremonium using a microengineered cultivation chip. This isolate was unusual in that it organizes into macroscopic structures when initially cultivated within microwells with a porous aluminum oxide (PAO) base. These "templated mycelial bundles" (TMB) were formed from masses of parallel hyphae with side branching suppressed. TMB were highly hydrated, facilitating the passive movement of solutes along the bundle. By using a range of culture chips, it was deduced that the critical factors in triggering the TMB were growth in microwells from 50 to 300 µm in diameter with a PAO base. Cultivation experiments, using spores and pigments as tracking agents, indicate that bulk growth of the TMB occurs at the base. TMB morphology is highly coherent and is maintained after growing out of the microwells. TMB can explore their environment by developing unbundled lateral hyphae; TMB only followed if nutrients were available. Because of the ease of fabricating numerous microstructures, we suggest this is a productive approach for exploring morphology and growth in multicellular microorganisms and microbial communities.

16.
Front Microbiol ; 7: 1779, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27899916

RESUMO

Lipolytic enzymes that retain high levels of catalytic activity when exposed to a variety of denaturing conditions are of high importance for a number of biotechnological applications. In this study, we aimed to identify new lipolytic enzymes, which are highly resistant to prolonged exposure to elevated temperatures. To achieve this, we searched for genes encoding for such proteins in the genomes of a microbial consortium residing in a hot spring located in China. After performing functional genomic screening on a bacterium of the genus Dictyoglomus, which was isolated from this hot spring following in situ enrichment, we identified a new esterolytic enzyme, termed EstDZ3. Detailed biochemical characterization of the recombinant enzyme, revealed that it constitutes a slightly alkalophilic and highly active esterase against esters of fatty acids with short to medium chain lengths. Importantly, EstDZ3 exhibits remarkable thermostability, as it retains high levels of catalytic activity after exposure to temperatures as high as 95°C for several hours. Furthermore, it exhibits very good stability against exposure to high concentrations of a variety of organic solvents. Interestingly, EstDZ3 was found to have very little similarity to previously characterized esterolytic enzymes. Computational modeling of the three-dimensional structure of this new enzyme predicted that it exhibits a typical α/ß hydrolase fold that seems to include a "subdomain insertion", which is similar to the one present in its closest homolog of known function and structure, the cinnamoyl esterase Lj0536 from Lactobacillus johnsonii. As it was found in the case of Lj0536, this structural feature is expected to be an important determinant of the catalytic properties of EstDZ3. The high levels of esterolytic activity of EstDZ3, combined with its remarkable thermostability and good stability against a range of organic solvents and other denaturing agents, render this new enzyme a candidate biocatalyst for high-temperature biotechnological applications.

17.
Trends Microbiol ; 24(4): 257-269, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26822253

RESUMO

Microorganisms use collective migration to cross barriers and reach new habitats, and the ability to form motile swarms offers a competitive advantage. Traditionally, dispersal by microbial swarm propagation has been studied in monoculture. Microorganisms can facilitate other species' dispersal by forming multispecies swarms, with mutual benefits. One party (the transporter) moves a sessile partner (the cargo). This results in asymmetric associations ranging from temporary marriages of convenience to long-term fellow travellers. In the context of the 'microbial market', the parties offer very different services in exchange. We discuss bacteria transporting bacteria, eukaryotic microorganisms moving bacteria, and bacteria facilitating the spread of eukaryotes - and ask what the benefits are, the methods of study, and the consequences of multispecies, swarming logistics networks.


Assuntos
Fenômenos Fisiológicos Bacterianos , Ecossistema , Bactérias , Microbiologia Ambiental , Flagelos/fisiologia , Consórcios Microbianos , Interações Microbianas , Modelos Biológicos
18.
Front Microbiol ; 6: 1294, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635762

RESUMO

A carboxyl esterase (TtEst2) has been identified in a novel thermophilic bacterium, Thermogutta terrifontis from the phylum Planctomycetes and has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity toward small p-nitrophenyl (pNP) carboxylic esters with optimal activity for pNP-acetate. The enzyme shows moderate thermostability retaining 75% activity after incubation for 30 min at 70°C. The crystal structures have been determined for the native TtEst2 and its complexes with the carboxylic acid products propionate, butyrate, and valerate. TtEst2 differs from most enzymes of the α/ß-hydrolase family 3 as it lacks the majority of the 'cap' domain and its active site cavity is exposed to the solvent. The bound ligands have allowed the identification of the carboxyl pocket in the enzyme active site. Comparison of TtEst2 with structurally related enzymes has given insight into how differences in their substrate preference can be rationalized based upon the properties of their active site pockets.

19.
mBio ; 6(3): e00074-15, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25968641

RESUMO

UNLABELLED: Swarming bacteria are challenged by the need to invade hostile environments. Swarms of the flagellated bacterium Paenibacillus vortex can collectively transport other microorganisms. Here we show that P. vortex can invade toxic environments by carrying antibiotic-degrading bacteria; this transport is mediated by a specialized, phenotypic subpopulation utilizing a process not dependent on cargo motility. Swarms of beta-lactam antibiotic (BLA)-sensitive P. vortex used beta-lactamase-producing, resistant, cargo bacteria to detoxify BLAs in their path. In the presence of BLAs, both transporter and cargo bacteria gained from this temporary cooperation; there was a positive correlation between BLA resistance and dispersal. P. vortex transported only the most beneficial antibiotic-resistant cargo (including environmental and clinical isolates) in a sustained way. P. vortex displayed a bet-hedging strategy that promoted the colonization of nontoxic niches by P. vortex alone; when detoxifying cargo bacteria were not needed, they were lost. This work has relevance for the dispersal of antibiotic-resistant microorganisms and for strategies for asymmetric cooperation with agricultural and medical implications. IMPORTANCE: Antibiotic resistance is a major health threat. We show a novel mechanism for the local spread of antibiotic resistance. This involves interactions between different bacteria: one species provides an enzyme that detoxifies the antibiotic (a sessile cargo bacterium carrying a resistance gene), while the other (Paenibacillus vortex) moves itself and transports the cargo. P. vortex used a bet-hedging strategy, colonizing new environments alone when the cargo added no benefit, but cooperating when the cargo was needed. This work is of interest in an evolutionary context and sheds light on fundamental questions, such as how environmental antibiotic resistance may lead to clinical resistance and also microbial social organization, as well as the costs, benefits, and risks of dispersal in the environment.


Assuntos
Microbiologia Ambiental , Locomoção , Consórcios Microbianos , Interações Microbianas , Paenibacillus/efeitos dos fármacos , Paenibacillus/fisiologia , Hidrólise , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo
20.
Biosens Bioelectron ; 64: 625-32, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25441411

RESUMO

The use of live bacterial reporters as sensing entities in whole-cell biosensors allows the investigation of the biological effects of a tested sample, as well as the bioavailability of its components. Here we present a proof of concept for a new design for online continuous water monitoring flow-cell biosensor, incorporating recombinant reporter bacteria, engineered to generate an optical signal (fluorescent or bioluminescent) in the presence of the target compound(s). At the heart of the flow-cell is a disposable chip made of porous aluminum oxide (PAO), which retains the sensor microorganisms on its rigid planar surface, while its high porosity allows an undisturbed access both to the sample and to essential nutrients. The ability of the bacterial reporters to detect model toxic chemicals was first demonstrated using a "naked" PAO chip placed on solid agar, and later in a chip encased in a specially designed flow-through configuration which enables continuous on-line monitoring. The applicability of the PAO chip to simultaneous online detection of diverse groups of chemicals was demonstrated by the incorporation of a 6-member sensor array into the flow-through chip. The selective response of the array was also confirmed in spiked municipal wastewater effluents. Sensing activity was retained by the bacteria after 12-weeks storage of freeze-dried biochips, demonstrating the biochip potential as a simple minimal maintenance "plug-in" cartridge. This low-cost and easy to handle PAO-based flow-cell biosensor may serve as a basis for a future platform for water quality monitoring.


Assuntos
Óxido de Alumínio/química , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Bioensaio/instrumentação , Monitoramento Ambiental/instrumentação , Análise de Injeção de Fluxo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Poluentes Químicos da Água/análise , Reatores Biológicos/microbiologia , Técnicas Biossensoriais/instrumentação , Equipamentos Descartáveis , Desenho de Equipamento , Análise de Falha de Equipamento , Medições Luminescentes/instrumentação , Miniaturização , Porosidade , Transdutores , Poluentes Químicos da Água/farmacologia , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA