Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769334

RESUMO

In the present study, we used a mouse model of Alzheimer's disease (AD) (3×Tg-AD mice) to longitudinally analyse the expression level of PDIA3, a protein disulfide isomerase and endoplasmic reticulum (ER) chaperone, in selected brain limbic areas strongly affected by AD-pathology (amygdala, entorhinal cortex, dorsal and ventral hippocampus). Our results suggest that, while in Non-Tg mice PDIA3 levels gradually reduce with aging in all brain regions analyzed, 3×Tg-AD mice showed an age-dependent increase in PDIA3 levels in the amygdala, entorhinal cortex, and ventral hippocampus. A significant reduction of PDIA3 was observed in 3×Tg-AD mice already at 6 months of age, as compared to age-matched Non-Tg mice. A comparative immunohistochemistry analysis performed on 3×Tg-AD mice at 6 (mild AD-like pathology) and 18 (severe AD-like pathology) months of age showed a direct correlation between the cellular level of Aß and PDIA3 proteins in all the brain regions analysed, even if with different magnitudes. Additionally, an immunohistochemistry analysis showed the presence of PDIA3 in all post-mitotic neurons and astrocytes. Overall, altered PDIA3 levels appear to be age- and/or pathology-dependent, corroborating the ER chaperone's involvement in AD pathology, and supporting the PDIA3 protein as a potential novel therapeutic target for the treatment of AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Encéfalo/metabolismo , Camundongos Endogâmicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
2.
Sci Rep ; 12(1): 21376, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494508

RESUMO

Currently, little is known about the spatial distribution of white matter hyperintensities (WMH) in the brain of patients with Systemic Lupus erythematosus (SLE). Previous lesion markers, such as number and volume, ignore the strategic location of WMH. The goal of this work was to develop a fully-automated method to identify predominant patterns of WMH across WM tracts based on cluster analysis. A total of 221 SLE patients with and without neuropsychiatric symptoms from two different sites were included in this study. WMH segmentations and lesion locations were acquired automatically. Cluster analysis was performed on the WMH distribution in 20 WM tracts. Our pipeline identified five distinct clusters with predominant involvement of the forceps major, forceps minor, as well as right and left anterior thalamic radiations and the right inferior fronto-occipital fasciculus. The patterns of the affected WM tracts were consistent over the SLE subtypes and sites. Our approach revealed distinct and robust tract-based WMH patterns within SLE patients. This method could provide a basis, to link the location of WMH with clinical symptoms. Furthermore, it could be used for other diseases characterized by presence of WMH to investigate both the clinical relevance of WMH and underlying pathomechanism in the brain.


Assuntos
Lúpus Eritematoso Sistêmico , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Aprendizado de Máquina não Supervisionado , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lúpus Eritematoso Sistêmico/diagnóstico por imagem , Lúpus Eritematoso Sistêmico/patologia
3.
Front Neurosci ; 16: 695888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250439

RESUMO

INTRODUCTION/PURPOSE: Systemic lupus erythematosus (SLE) is a chronic auto-immune disease with a broad spectrum of clinical presentations, including heterogeneous neuropsychiatric (NP) syndromes. Structural brain abnormalities are commonly found in SLE and NPSLE, but their role in diagnosis is limited, and their usefulness in distinguishing between NPSLE patients and patients in which the NP symptoms are not primarily attributed to SLE (non-NPSLE) is non-existent. Self-supervised contrastive learning algorithms proved to be useful in classification tasks in rare diseases with limited number of datasets. Our aim was to apply self-supervised contrastive learning on T1-weighted images acquired from a well-defined cohort of SLE patients, aiming to distinguish between NPSLE and non-NPSLE patients. SUBJECTS AND METHODS: We used 3T MRI T1-weighted images of 163 patients. The training set comprised 68 non-NPSLE and 34 NPSLE patients. We applied random geometric transformations between iterations to augment our data sets. The ML pipeline consisted of convolutional base encoder and linear projector. To test the classification task, the projector was removed and one linear layer was measured. Validation of the method consisted of 6 repeated random sub-samplings, each using a random selection of a small group of patients of both subtypes. RESULTS: In the 6 trials, between 79% and 83% of the patients were correctly classified as NPSLE or non-NPSLE. For a qualitative evaluation of spatial distribution of the common features found in both groups, Gradient-weighted Class Activation Maps (Grad-CAM) were examined. Thresholded Grad-CAM maps show areas of common features identified for the NPSLE cohort, while no such communality was found for the non-NPSLE group. DISCUSSION/CONCLUSION: The self-supervised contrastive learning model was effective in capturing common brain MRI features from a limited but well-defined cohort of SLE patients with NP symptoms. The interpretation of the Grad-CAM results is not straightforward, but indicates involvement of the lateral and third ventricles, periventricular white matter and basal cisterns. We believe that the common features found in the NPSLE population in this study indicate a combination of tissue loss, local atrophy and to some extent that of periventricular white matter lesions, which are commonly found in NPSLE patients and appear hypointense on T1-weighted images.

4.
Rheumatology (Oxford) ; 61(6): 2663-2671, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34730801

RESUMO

OBJECTIVES: Advanced white matter hyperintensity (WMH) markers on brain MRI may help reveal underlying mechanisms and aid in the diagnosis of different phenotypes of SLE patients experiencing neuropsychiatric (NP) manifestations. METHODS: In this prospective cohort study, we included a clinically well-defined cohort of 155 patients consisting of 38 patients with NPSLE (26 inflammatory and 12 ischaemic phenotype) and 117 non-NPSLE patients. Differences in 3 T MRI WMH markers (volume, type and shape) were compared between patients with NPSLE and non-NPSLE and between patients with inflammatory and ischaemic NPSLE by linear and logistic regression analyses corrected for age, sex and intracranial volume. RESULTS: Compared with non-NPSLE [92% female; mean age 42 (13) years], patients with NPSLE [87% female; mean age 40 (14) years] showed a higher total WMH volume [B (95%-CI)]: 0.46 (0.0 7 ↔ 0.86); P = 0.021], a higher periventricular/confluent WMH volume [0.46 (0.0 6 ↔ 0.86); P = 0.024], a higher occurrence of periventricular with deep WMH type [0.32 (0.1 3 ↔ 0.77); P = 0.011], a higher number of deep WMH lesions [3.06 (1.2 1 ↔ 4.90); P = 0.001] and a more complex WMH shape [convexity: ‒0.07 (‒0.12 ↔ ‒0.02); P = 0.011, concavity index: 0.05 (0.0 1 ↔ 0.08); P = 0.007]. WMH shape was more complex in inflammatory NPSLE patients [89% female; mean age 39 (15) years] compared with patients with the ischaemic phenotype [83% female; mean age 41 (11) years] [concavity index: 0.08 (0.0 1 ↔ 0.15); P = 0.034]. CONCLUSION: We demonstrated that patients with NPSLE showed a higher periventricular/confluent WMH volume and more complex shape of WMH compared with non-NPSLE patients. This finding was particularly significant in inflammatory NPLSE patients, suggesting different or more severe underlying pathophysiological abnormalities.


Assuntos
Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Substância Branca , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Humanos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/diagnóstico por imagem , Lúpus Eritematoso Sistêmico/patologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/patologia , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Substância Branca/diagnóstico por imagem
5.
RMD Open ; 7(2)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34321253

RESUMO

OBJECTIVE: To compare cognitive function between patients with different phenotypes of neuropsychiatric systemic lupus erythematosus (NPSLE) and assess its association with brain and white matter hyperintensity (WMH) volumes. METHODS: Patients attending the Leiden University Medical Centre NPSLE clinic between 2007 and 2015 without large brain infarcts were included (n=151; 42±13 years, 91% women). In a multidisciplinary consensus meeting, neuropsychiatric symptoms were attributed to systemic lupus erythematosus (SLE) (NPSLE, inflammatory (n=24) or ischaemic (n=12)) or to minor/non-NPSLE (n=115). Multiple regression analyses were performed to compare cognitive function between NPSLE phenotypes and to assess associations between brain and WMH volumes and cognitive function cross-sectionally. RESULTS: Global cognitive function was impaired in 5%, learning and memory (LM) in 46%, executive function and complex attention (EFCA) in 39% and psychomotor speed (PS) in 46% of all patients. Patients with inflammatory NPSLE showed the most cognitive impairment in all domains (p≤0.05).Higher WMH volume associated with lower PS in the total group (B: -0.14 (95% CI -0.32 to -0.02)); especially in inflammatory NPSLE (B: -0.36 (95% CI -0.60 to -0.12). In the total group, lower total brain volume and grey matter volume associated with lower cognitive functioning in all domains (all: 0.00/0.01 (0.00;0.01)) and lower white matter volume associated with lower LM, EFCA and PS (all: 0.00/0.01 (0.00;0.01)). CONCLUSION: We demonstrated that an association between brain and WMH volumes and cognitive function is present in patients with SLE, but differs between (NP)SLE phenotypes. WMHs associated with PS especially in inflammatory NPSLE, which suggests a different, potentially more severe underlying pathophysiological mechanism of cognitive impairment in this phenotype.


Assuntos
Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Substância Branca , Cognição , Feminino , Humanos , Lúpus Eritematoso Sistêmico/complicações , Vasculite Associada ao Lúpus do Sistema Nervoso Central/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Substância Branca/diagnóstico por imagem
6.
Eur Radiol ; 31(11): 8208-8217, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33929569

RESUMO

OBJECTIVES: The underlying structural brain correlates of neuropsychiatric involvement in systemic lupus erythematosus (NPSLE) remain unclear, thus hindering correct diagnosis. We compared brain tissue volumes between a clinically well-defined cohort of patients with NPSLE and SLE patients with neuropsychiatric syndromes not attributed to SLE (non-NPSLE). Within the NPSLE patients, we also examined differences between patients with two distinct disease phenotypes: ischemic and inflammatory. METHODS: In this prospective (May 2007 to April 2015) cohort study, we included 38 NPSLE patients (26 inflammatory and 12 ischemic) and 117 non-NPSLE patients. All patients underwent a 3-T brain MRI scan that was used to automatically determine white matter, grey matter, white matter hyperintensities (WMH) and total brain volumes. Group differences in brain tissue volumes were studied with linear regression analyses corrected for age, gender, and total intracranial volume and expressed as B values and 95% confidence intervals. RESULTS: NPSLE patients showed higher WMH volume compared to non-NPSLE patients (p = 0.004). NPSLE inflammatory patients showed lower total brain (p = 0.014) and white matter volumes (p = 0.020), and higher WMH volume (p = 0.002) compared to non-NPSLE patients. Additionally, NPSLE inflammatory patients showed lower white matter (p = 0.020) and total brain volumes (p = 0.038) compared to NPSLE ischemic patients. CONCLUSION: We showed that different phenotypes of NPSLE were related to distinct patterns of underlying structural brain MRI changes. Especially the inflammatory phenotype of NPSLE was associated with the most pronounced brain volume changes, which might facilitate the diagnostic process in SLE patients with neuropsychiatric symptoms. KEY POINTS: • Neuropsychiatric systemic lupus erythematosus (NPSLE) patients showed a higher WMH volume compared to SLE patients with neuropsychiatric syndromes not attributed to SLE (non-NPSLE). • NPSLE patients with inflammatory phenotype showed a lower total brain and white matter volume, and a higher volume of white matter hyperintensities, compared to non-NPSLE patients. • NPSLE patients with inflammatory phenotype showed lower white matter and total brain volumes compared to NPSLE patients with ischemic phenotype.


Assuntos
Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Humanos , Vasculite Associada ao Lúpus do Sistema Nervoso Central/diagnóstico por imagem , Imageamento por Ressonância Magnética , Fenótipo , Estudos Prospectivos
7.
Neuroimage Clin ; 30: 102637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33812303

RESUMO

Systemic lupus erythematosus (SLE) is an auto-immune disease characterized by multi-organ involvement. Although uncommon, central nervous system involvement in SLE, termed neuropsychiatric SLE (NPSLE), is not an exception. Current knowledge on underlying pathogenic mechanisms is incomplete, however, neuroinflammation is thought to play a critical role. Evidence from neurodegenerative diseases and multiple sclerosis suggests that neuroinflammation is correlated with brain iron accumulation, making quantitative susceptibility mapping (QSM) a potential hallmark for neuroinflammation in vivo. This study assessed susceptibility values of the thalamus and basal ganglia in (NP)SLE patients and further investigated the in vivo findings with histological analyses of postmortem brain tissue derived from SLE patients. We used a 3T MRI scanner to acquire single-echo T2*-weighted images of 44 SLE patients and 20 age-matched healthy controls. Of the 44 patients with SLE, all had neuropsychiatric complaints, of which 29 were classified as non-NPSLE and 15 as NPSLE (seven as inflammatory NPSLE and eight as ischemic NPSLE). Mean susceptibility values of the thalamus, caudate nucleus, putamen, and globus pallidus were calculated. Formalin-fixed paraffin-embedded post-mortem brain tissue including the putamen and globus pallidus of three additional SLE patients was obtained and stained for iron, microglia and astrocytes. Susceptibility values of SLE patients and age-matched controls showed that iron levels in the thalamus and basal ganglia were not changed due to the disease. No subgroup of SLE showed higher susceptibility values. No correlation was found with disease activity or damage due to SLE. Histological examination of the post-mortem brain showed no increased iron accumulation. Our results suggest that neuroinflammation in NPSLE does not necessarily go hand in hand with iron accumulation, and that the inflammatory pathomechanism in SLE may differ from the one observed in neurodegenerative diseases and in multiple sclerosis.


Assuntos
Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Gânglios da Base/diagnóstico por imagem , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico por imagem , Vasculite Associada ao Lúpus do Sistema Nervoso Central/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem
8.
Rheumatology (Oxford) ; 60(6): 2678-2687, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33507240

RESUMO

OBJECTIVES: To evaluate longitudinal variations in diffusion tensor imaging (DTI) metrics of different white matter (WM) tracts of newly diagnosed SLE patients, and to assess whether DTI changes relate to changes in clinical characteristics over time. METHODS: A total of 17 newly diagnosed SLE patients (19-55 years) were assessed within 24 months from diagnosis with brain MRI (1.5 T Philips Achieva) at baseline, and after at least 12 months. Fractional anisotropy, mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity values were calculated in several normal-appearing WM tracts. Longitudinal variations in DTI metrics were analysed by repeated measures analysis of variance. DTI changes were separately assessed for 21 WM tracts. Associations between longitudinal alterations of DTI metrics and clinical variables (SLEDAI-2K, complement levels, glucocorticoid dosage) were evaluated using adjusted Spearman correlation analysis. RESULTS: Mean MD and RD values from the normal-appearing WM significantly increased over time (P = 0.019 and P = 0.021, respectively). A significant increase in RD (P = 0.005) and MD (P = 0.012) was found in the left posterior limb of the internal capsule; RD significantly increased in the left retro-lenticular part of the internal capsule (P = 0.013), and fractional anisotropy significantly decreased in the left corticospinal tract (P = 0.029). No significant correlation was found between the longitudinal change in DTI metrics and the change in clinical measures. CONCLUSION: Increase in diffusivity, reflecting a compromised WM tissue microstructure, starts in initial phases of the SLE disease course, even in the absence of overt neuropsychiatric (NP) symptoms. These results indicate the importance of monitoring NP involvement in SLE, even shortly after diagnosis.


Assuntos
Imagem de Tensor de Difusão , Lúpus Eritematoso Sistêmico/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Análise de Variância , Anisotropia , Feminino , Humanos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA