Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arthritis Rheumatol ; 71(4): 612-625, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30390386

RESUMO

OBJECTIVE: It remains unclear if and how inflammation and new bone formation in spondyloarthritis (SpA) are coupled. We undertook this study to assess the hypothesis that interleukin-17A (IL-17A) is a pivotal driver of both processes. METHODS: The effect of tumor necrosis factor (TNF) and IL-17A on osteogenesis was tested in an osteoblastic differentiation assay using SpA fibroblast-like synoviocytes (FLS) differentiated with dexamethasone, ß-glycophosphatase, and ascorbic acid. IL-17A blockade was performed in HLA-B27/human ß2 -microglobulin (hß2 m)-transgenic rats, which served as a model for SpA in both prophylactic and therapeutic settings. Inflammation and new bone formation were evaluated by micro-computed tomography imaging, histologic analysis, and gene expression profiling. RESULTS: TNF and IL-17A significantly increased in vitro osteoblastic differentiation. In vivo, prophylactic blockade of IL-17A significantly delayed spondylitis and arthritis development and decreased arthritis severity. Anti-IL-17A treatment was also associated with prevention of bone loss and periosteal new bone formation. Therapeutic targeting of IL-17A after the initial inflammatory insult also significantly reduced axial and peripheral joint inflammation. This treatment was again associated with a marked reduction in spinal and peripheral structural damage, including new bone formation. RNA sequencing of target tissue confirmed that IL-17A is a key driver of the molecular signature of disease in this model and that therapeutic anti-IL-17A treatment reversed the inflammatory signature and the selected gene expression related to bone damage. CONCLUSION: Both prophylactic and therapeutic inhibition of IL-17A diminished inflammation and new bone formation in HLA-B27/hß2 m-transgenic rats. Taken together with the ability of IL-17A to promote osteoblastic differentiation of human SpA FLS, these data suggest a direct link between IL-17A-driven inflammation and pathologic new bone formation in SpA.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Interleucina-17/fisiologia , Osteogênese/efeitos dos fármacos , Espondilartrite/tratamento farmacológico , Fator de Necrose Tumoral alfa/farmacologia , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Antígeno HLA-B27/metabolismo , Humanos , Inflamação , Osteoblastos/metabolismo , Ratos , Ratos Transgênicos , Espondilartrite/fisiopatologia , Sinoviócitos/efeitos dos fármacos , Microtomografia por Raio-X
2.
J Bone Miner Res ; 23(4): 544-51, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18072878

RESUMO

UNLABELLED: Current bisphosphonate therapies effectively prevent bone loss in postmenopausal women. We studied the effect of a single intravenous dose of ZOL in ovariectomized rats. Protection from bone loss was dose dependent, lasting for up to 32 weeks, supporting the rationale for an annual intravenous dosing regimen of ZOL for treatment of postmenopausal osteoporosis. INTRODUCTION: Once-yearly dosing with zoledronic acid (ZOL) 5 mg can increase BMD and reduce fracture rate in postmenopausal women with low BMD. The primary objective of this study was to determine the duration of bone protective effects of a single dose of ZOL in ovariectomized rats, an animal model of postmenopausal osteopenia. Secondary objectives were to determine the effects on bone turnover and mechanical properties. MATERIALS AND METHODS: Female Wistar rats (10 per group) received single intravenous doses of ZOL 0.8, 4, 20, 100, or 500 microg/kg, alendronate 200 microg/kg, or isotonic saline 4 days before bilateral ovariectomy. Sham-operated controls were pretreated with saline. Mass and density of cancellous and cortical bone (pQCT) were measured at 4-wk intervals for 32 wk. Bone architecture (microCT), bone formation dynamics (fluorochrome label-based histomorphometry), and biomechanical strength in compression testing were also assessed at 32 wk. RESULTS: Ovariectomy-associated BMD loss was significantly attenuated for 32 wk by ZOL >or=4 microg/kg for total BMD, ZOL >or=20 microg/kg for cortical BMD, and ZOL >or=4 microg/kg for cancellous BMD (p < 0.01 versus ovariectomized controls). Alendronate 200 microg/kg was of equivalent potency to ZOL 20 microg/kg. Ovariectomy-associated decreases in trabecular architectural parameters were dose-dependently attenuated by ZOL. Alendronate 200 microg/kg was equivalent to ZOL 20 microg/kg. The bone resorption marker TRACP5b indicated transient suppression of elevated osteoclast activity by ZOL relative to OVX-rats even at the lowest dose of 0.8 microg/kg, whereas at 100-500 microg/kg, the effect was significant relative to the OVX control for the entire duration of the study of 32 wk. Bone formation parameters were not significantly affected by ZOL 20 microg/kg but were significantly reduced by ZOL 100-500 microg/kg. Alendronate 200 microg/kg was equivalent to ZOL 100 microg/kg. ZOL produced dose-related improvements in bone strength parameters after ovariectomy. Alendronate 200 microg/kg was of similar potency to ZOL 20 microg/kg. CONCLUSIONS: The duration and magnitude of the bone-protecting effect of a single intravenous dose of ZOL in ovariectomized rats is dose dependent and lasts for up to 32 wk. Compared with alendronate, ZOL shows 10-fold higher potency in preventing bone loss. These data support the use of an annual intravenous ZOL dosing regimen for the treatment of osteoporosis.


Assuntos
Osso e Ossos/efeitos dos fármacos , Difosfonatos/farmacologia , Imidazóis/farmacologia , Ovariectomia , Animais , Densidade Óssea , Feminino , Osteocalcina/sangue , Ratos , Ratos Wistar , Ácido Zoledrônico
3.
Bone ; 39(4): 787-95, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16844441

RESUMO

Recent evidence has demonstrated that long-term estrogen deprivation using aromatase inhibitor therapy in postmenopausal women with breast cancer results in bone loss and increased fracture risk. Bisphosphonates are potent inhibitors of bone resorption and have demonstrated efficacy in preventing bone loss in postmenopausal women with low bone mineral density (BMD) and in patients with breast cancer receiving estrogen deprivation therapy. Therefore, this study investigated the effects of the bisphosphonate zoledronic acid on BMD and bone strength in rats treated with the aromatase inhibitor, letrozole. Peripheral quantitative computed tomography demonstrated that treatment of rats with daily oral letrozole (1 mg/kg) induced significant bone loss and cortical thinning compared with control animals (P < 0.01). A single prior intravenous dose of zoledronic acid dose dependently protected against letrozole-induced bone loss and cortical thinning, with the highest evaluated dose (20 microg/kg) resulting in BMD values that were not significantly different from controls over the 24 weeks of letrozole treatment. Furthermore, biomechanical testing of the distal femoral metaphysis demonstrated that zoledronic acid (20 microg/kg) significantly prevented the decrease in stiffness and elastic modulus induced by letrozole treatment. Taken together, these data support the use of zoledronic acid for the prevention of bone loss in women with breast cancer receiving aromatase inhibitor therapy.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Difosfonatos/farmacologia , Imidazóis/farmacologia , Osteoporose/prevenção & controle , Animais , Inibidores da Aromatase/toxicidade , Fenômenos Biomecânicos , Peso Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/administração & dosagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Difosfonatos/administração & dosagem , Estrogênios/metabolismo , Feminino , Imidazóis/administração & dosagem , Injeções Intravenosas , Letrozol , Nitrilas/toxicidade , Tamanho do Órgão/efeitos dos fármacos , Osteocalcina/sangue , Osteoporose/induzido quimicamente , Osteoporose/fisiopatologia , Ovariectomia , Ligante RANK/sangue , Ratos , Ratos Wistar , Triazóis/toxicidade , Útero/efeitos dos fármacos , Útero/patologia , Ácido Zoledrônico
4.
J Bone Miner Metab ; 23 Suppl: 90-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15984422

RESUMO

Characterization of trabecular bone structures requires necropsy of animals followed by a labor-intense histomorphometric or ex vivo micro-CT analysis. We tested the novel vivaCT40 from Scanco Medical AG (Bassersdorf, Switzerland), which allows monitoring such changes repeatedly in anesthetized rats and mice. Postmenopausal osteoporosis: in 8-month-old ovariectomized (OVX) rats, the vivaCT40 was capable of picking up the decrease in trabecular bone volume and trabecular thinning as well as the decrease in the number of trabecular elements as a function of time. The bone anabolic effects of parathyroid hormone [hPTH(1-34)], which resulted in an increase in trabecular thickness but not their number, as well as the bone protective effect of the two antiresorptive agents zoledronic acid (ZA) and 17-alpha ethinylestradiol (aEE), were detected correctly with the vivaCT40. Adjuvans arthritis: the vivaCT40 allowed measuring trabecular bone loss caused by periarticular inflammation in a rat model of adjuvans arthritis and demonstrated the bone protective effect of dexamethasone (DM). In addition, it was possible to image the subtle erosive lesions in subchondral bone caused by the inflammatory processes. Tumor osteolysis: the vivaCT40 allowed monitoring of the progressive osteolytic response following the local administration of 4T1luc2000 tumor cells into the tibia metaphysis of nude mice. The potent protective effect of ZA on tumor osteolysis was demonstrated. In summary, the new vivaCT40 can monitor the effects of known agents and diseases such as osteoporosis, inflammatory arthritis, and tumor invasion on 3-D trabecular microarchitecture accurately, repeatedly, reliably, and quickly in anesthetized rats and mice. The scanner represents a breakthrough for noninvasive imaging and structural measurements in small rodents.


Assuntos
Doenças Ósseas/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Animais , Doenças Ósseas/patologia , Linhagem Celular Tumoral , Feminino , Fêmur/patologia , Camundongos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Ratos , Tíbia/patologia , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA