Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831122

RESUMO

Organ morphogenesis depends on mechanical interactions between cells and tissues. These interactions generate forces that can be sensed by cells and affect key cellular processes. However, how mechanical forces, together with biochemical signals, contribute to the shaping of complex organs is still largely unclear. We address this question using the seed of Arabidopsis as a model system. We show that seeds first experience a phase of rapid anisotropic growth that is dependent on the response of cortical microtubule (CMT) to forces, which guide cellulose deposition according to shape-driven stresses in the outermost layer of the seed coat. However, at later stages of development, we show that seed growth is isotropic and depends on the properties of an inner layer of the seed coat that stiffens its walls in response to tension but has isotropic material properties. Finally, we show that the transition from anisotropic to isotropic growth is due to the dampening of cortical microtubule responses to shape-driven stresses. Altogether, our work supports a model in which spatiotemporally distinct mechanical responses control the shape of developing seeds in Arabidopsis.

2.
Cell Surf ; 11: 100121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38405175

RESUMO

Plant cell wall researchers were asked their view on what the major unanswered questions are in their field. This article summarises the feedback that was received from them in five questions. In this issue you can find equivalent syntheses for researchers working on bacterial, unicellular parasite and fungal systems.

3.
Curr Biol ; 34(4): 793-807.e7, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38295796

RESUMO

A key adaptation of plants to life on land is the formation of water-conducting cells (WCCs) for efficient long-distance water transport. Based on morphological analyses it is thought that WCCs have evolved independently on multiple occasions. For example, WCCs have been lost in all but a few lineages of bryophytes but, strikingly, within the liverworts a derived group, the complex thalloids, has evolved a novel externalized water-conducting tissue composed of reinforced, hollow cells termed pegged rhizoids. Here, we show that pegged rhizoid differentiation in Marchantia polymorpha is controlled by orthologs of the ZHOUPI and ICE bHLH transcription factors required for endosperm cell death in Arabidopsis seeds. By contrast, pegged rhizoid development was not affected by disruption of MpNAC5, the Marchantia ortholog of the VND genes that control WCC formation in flowering plants. We characterize the rapid, genetically controlled programmed cell death process that pegged rhizoids undergo to terminate cellular differentiation and identify a corresponding upregulation of conserved putative plant cell death effector genes. Lastly, we show that ectopic expression of MpZOU1 increases production of pegged rhizoids and enhances drought tolerance. Our results support that pegged rhizoids evolved independently of other WCCs. We suggest that elements of the genetic control of developmental cell death are conserved throughout land plants and that the ZHOUPI/ICE regulatory module has been independently recruited to promote cell wall modification and programmed cell death in liverwort rhizoids and in the endosperm of flowering plant seed.


Assuntos
Arabidopsis , Marchantia , Marchantia/genética , Água , Plantas , Arabidopsis/genética , Apoptose , Parede Celular , Regulação da Expressão Gênica de Plantas
4.
Plants (Basel) ; 12(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37514340

RESUMO

Seeds are specialized plant organs that carry, nurture, and protect plant offspring. Developmental coordination between the three genetically distinct seed tissues (the embryo, endosperm, and seed coat) is crucial for seed viability. In this study, we explore the relationship between the TFs AtHB25 and ICE1. Previous results identified ICE1 as a target gene of AtHB25. In seeds, a lack of ICE1 (ice1-2) suppresses the enhanced seed longevity and impermeability of the overexpressing mutant athb25-1D, but surprisingly, seed coat lipid polyester deposition is not affected, as shown by the double-mutant athb25-1D ice1-2 seeds. zou-4, another mutant lacking the transcriptional program for proper endosperm maturation and for which the endosperm persists, also presents a high sensitivity to seed aging. Analysis of gso1, gso2, and tws1-4 mutants revealed that a loss of embryo cuticle integrity does not underlie the seed-aging sensitivity of ice1-2 and zou-4. However, scanning electron microscopy revealed the presence of multiple fractures in the seed coats of the ice1 and zou mutants. Thus, this study highlights the importance of both seed coat composition and integrity in ensuring longevity and demonstrates that these parameters depend on multiple factors.

5.
C R Biol ; 346: 45-54, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254742

RESUMO

The successful sexual reproduction of flowering plants depends upon double fertilisation, during which pollen grains, produced within the male floral organ (the anther) deliver two sperm cells to the ovule, buried deep within the ovary, triggering the development of the embryo and the surrounding tissues of the seed. Although much attention has been given to pollen and embryo development, less has been focused on the supporting tissues surrounding these organisms as they develop, the tapetum and the endosperm. Intriguingly, despite their very different origins, these tissues appear to have converged functionally and developmentally. Here we will discuss this apparent convergence and its molecular and physiological basis.


Le succès de la reproduction des plantes à fleurs réside en la double fécondation, un processus au cours duquel les grains de pollen, produits à l'intérieur des pièces florales males (anthères), apportent 2 cellules spermatiques à l'ovule, enfouie profondément au sein de l'ovaire, déclenchant ainsi le développement de l'embryon et des tissus environnants de la graine. Bien qu'une attention particulière a été accordée au développement du grain de pollen et de l'embryon, les tissus qui les entourent et qui soutiennent leurs développements, respectivement le tapis et l'albumen, ont fait l'objet d'une attention moindre. De manière intrigante, ces tissus semblent avoir convergé au niveau de leur fonction et de leur développement malgré leurs origines très différentes. Nous disserterons ici les bases moléculaires et physiologiques de cette convergence apparente.


Assuntos
Magnoliopsida , Sementes , Sementes/genética , Magnoliopsida/genética , Reprodução/fisiologia , Células Germinativas , Desenvolvimento Embrionário , Flores
6.
Curr Biol ; 33(6): R210-R214, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36977378

RESUMO

The plant cuticle is one of the key innovations that allowed plants to colonize terrestrial ecosystems. By limiting molecular diffusion, the cuticle provides an interface that ensures controlled interactions between plant surfaces and their environments. It confers diverse and sometimes astonishing properties upon plant surfaces at both the molecular level (from water and nutrient exchange capacities to almost complete impermeability), to the macroscopic level (from water repellence to iridescence). It takes the form of a continuous modification of the outer cell wall of the plant epidermis from early in plant development (surrounding the epidermis of the developing plant embryo) and is actively maintained and modified throughout the growth and development of most plant aerial organs - including non-woody stems, flowers, leaves, and even the root cap of emerging primary and lateral roots. The cuticle was first identified as a distinct structure in the early 19th century, and has since been the focus of intense research that, while revealing the fundamental role of the cuticle in the life of terrestrial plants, has also highlighted many unresolved mysteries regarding cuticle biogenesis and structure.


Assuntos
Ecossistema , Plantas , Folhas de Planta , Flores , Água , Epiderme Vegetal
7.
RSC Adv ; 13(13): 8487-8495, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926302

RESUMO

The plant cuticle covers the plant's entire aerial surface and acts as the outermost protective layer. Despite being crucial for the survival of plants, surprisingly little is known about its biosynthesis. Conventional analytical techniques are limited to the isolation and depolymerization of the polyester cutin, which forms the cuticular scaffold. Although this approach allows the elucidation of incorporated cutin monomers, it neglects unincorporated metabolites participating in cutin polymerization. The feasibility of a novel approach is tested for in situ analysis of unpolymerized cuticular metabolites to enhance the understanding of cuticle biology. Intact cotyledons of Brassica napus and Arabidopsis thaliana seedlings are immersed in organic solvents for 60 seconds. Extracts are analyzed using high-resolution direct infusion mass spectrometry. A variety of different diffusion routes of plant metabolites across the cuticle are discussed. The results reveal different feasibilities depending on the research question and cuticle permeabilities in combination with the analyte's polarity. Especially hydrophilic analytes are expected to be co-located in the cell wall beneath the cuticle causing systematic interferences when comparing plants with different cuticle permeabilities. These interferences limit data interpretation to qualitative rather than quantitative comparison. In contrast, quantitative data evaluation is facilitated when analyzing cuticle-specific metabolites or plants with similar cuticle permeabilities.

8.
Nat Plants ; 9(2): 302-314, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658391

RESUMO

The evolution of special types of cells requires the acquisition of new gene regulatory networks controlled by transcription factors (TFs). In stomatous plants, a TF module formed by subfamilies Ia and IIIb basic helix-loop-helix TFs (Ia-IIIb bHLH) regulates stomatal formation; however, how this module evolved during land plant diversification remains unclear. Here we show that, in the astomatous liverwort Marchantia polymorpha, a Ia-IIIb bHLH module regulates the development of a unique sporophyte tissue, the seta, which is found in mosses and liverworts. The sole Ia bHLH gene, MpSETA, and a IIIb bHLH gene, MpICE2, regulate the cell division and/or differentiation of seta lineage cells. MpSETA can partially replace the stomatal function of Ia bHLH TFs in Arabidopsis thaliana, suggesting that a common regulatory mechanism underlies setal and stomatal formation. Our findings reveal the co-option of a Ia-IIIb bHLH TF module for regulating cell fate determination and/or cell division of distinct types of cells during land plant evolution.


Assuntos
Arabidopsis , Embriófitas , Marchantia , Marchantia/genética , Proteínas de Plantas/genética , Plantas/genética , Fatores de Transcrição/metabolismo , Embriófitas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
9.
Nat Commun ; 14(1): 67, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604410

RESUMO

In plants, as in animals, organ growth depends on mechanical interactions between cells and tissues, and is controlled by both biochemical and mechanical cues. Here, we investigate the control of seed size, a key agronomic trait, by mechanical interactions between two compartments: the endosperm and the testa. By combining experiments with computational modelling, we present evidence that endosperm pressure plays two antagonistic roles: directly driving seed growth, but also indirectly inhibiting it through tension it generates in the surrounding testa, which promotes wall stiffening. We show that our model can recapitulate wild type growth patterns, and is consistent with the small seed phenotype of the haiku2 mutant, and the results of osmotic treatments. Our work suggests that a developmental regulation of endosperm pressure is required to prevent a precocious reduction of seed growth rate induced by force-dependent seed coat stiffening.


Assuntos
Endosperma , Sementes , Endosperma/genética , Regulação da Expressão Gênica de Plantas
10.
Cell Surf ; 9: 100094, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36659959

RESUMO

EXTENSINS (EXTs) are an abundant and yet enigmatic class of cell wall proteins that are found across multicellular plant lineages, from Bryophytes to Angiosperms. They have been shown to be integrated within the cell wall matrix, and are proposed to play key roles in the dynamic regulation of cell-wall properties. Consistent with this, EXTs are thought to be important for plant growth and development. However, like many other classes of cell wall proteins, EXTs are biochemically complex, highly diverse, and are encoded by multiple genes, making in-depth functional characterization a challenging undertaking. Here we will provide an overview of current knowledge of the biochemistry and properties of EXTs, and of the tools that have been deployed to study their biological functions in plants.

11.
Methods Mol Biol ; 2581: 323-335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36413328

RESUMO

Many peptide hormones and growth factors in plants, particularly the small posttranslationally modified signaling peptides, are synthesized as larger precursor proteins. Proteolytic processing is thus required for peptide maturation, and additional posttranslational modifications may contribute to bioactivity. To what extent these posttranslational modifications impact on processing is largely unknown. Likewise, it is poorly understood how the cleavage sites within peptide precursors are selected by specific processing proteases, and whether or not posttranslational modifications contribute to cleavage site recognition. Here, we describe a mass spectrometry-based approach to address these questions. We developed a method using heavy isotope labeling to directly compare cleavage efficiency of different precursor-derived synthetic peptides by mass spectrometry. Thereby, we can analyze the effect of posttranslational modifications on processing and the specific sequence requirements of the processing proteases. As an example, we describe how this method has been used to assess the relevance of tyrosine sulfation for the processing of the Arabidopsis CIF4 precursor by the subtilase SBT5.4.


Assuntos
Arabidopsis , Hormônios Peptídicos , Hormônios Peptídicos/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Arabidopsis/metabolismo , Isótopos/metabolismo , Peptídeo Hidrolases/metabolismo
12.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196593

RESUMO

Seedling vigor is a key agronomic trait that determines juvenile plant performance. Angiosperm seeds develop inside fruits and are connected to the mother plant through vascular tissues. Their formation requires plant-specific genes, such as BREVIS RADIX (BRX) in Arabidopsis thaliana roots. BRX family proteins are found throughout the euphyllophytes but also occur in non-vascular bryophytes and non-seed lycophytes. They consist of four conserved domains, including the tandem BRX domains. We found that bryophyte or lycophyte BRX homologs can only partially substitute for Arabidopsis BRX (AtBRX) because they miss key features in the linker between the BRX domains. Intriguingly, however, expression of a BRX homolog from the lycophyte Selaginella moellendorffii (SmBRX) in an A. thaliana wild-type background confers robustly enhanced root growth vigor that persists throughout the life cycle. This effect can be traced to a substantial increase in seed and embryo size, is associated with enhanced vascular tissue proliferation, and can be reproduced with a modified, SmBRX-like variant of AtBRX. Our results thus suggest that BRX variants can boost seedling vigor and shed light on the activity of ancient, non-angiosperm BRX family proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Magnoliopsida , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plântula/genética , Magnoliopsida/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo
13.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36305487

RESUMO

During flowering plant reproduction, anthers produce pollen grains, the development of which is supported by the tapetum, a nourishing maternal tissue that also contributes non-cell-autonomously to the pollen wall, the resistant external layer on the pollen surface. How the anther restricts movement of the tapetum-derived pollen wall components, while allowing metabolites such as sugars and amino acids to reach the developing pollen, remains unknown. Here, we show experimentally that in arabidopsis thaliana the tapetum and developing pollen are symplastically isolated from each other, and from other sporophytic tissues, from meiosis onwards. We show that the peritapetal strip, an apoplastic structure, separates the tapetum and the pollen grains from other anther cell layers and can prevent the apoplastic diffusion of fluorescent proteins, again from meiosis onwards. The formation and selective barrier functions of the peritapetal strip require two NADPH oxidases, RBOHE and RBOHC, which play a key role in pollen formation. Our results suggest that, together with symplastic isolation, gating of the apoplast around the tapetum may help generate metabolically distinct anther compartments.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Flores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pólen/metabolismo , Reprodução , Regulação da Expressão Gênica de Plantas
15.
Proc Natl Acad Sci U S A ; 119(22): e2201446119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609199

RESUMO

The surface of pollen grains is reinforced by pollen wall components produced noncell autonomously by tapetum cells that surround developing pollen within the male floral organ, the anther. Here, we show that tapetum activity is regulated by the GASSHO (GSO) receptor-like kinase pathway, controlled by two sulfated peptides, CASPARIAN STRIP INTEGRITY FACTOR 3 (CIF3) and CIF4, the precursors of which are expressed in the tapetum itself. Coordination of tapetum activity with pollen grain development depends on the action of subtilases, including AtSBT5.4, which are produced stage specifically by developing pollen grains. Tapetum-derived CIF precursors are processed by subtilases, triggering GSO-dependent tapetum activation. We show that the GSO receptors act from the middle layer, a tissue surrounding the tapetum and developing pollen. Three concentrically organized cell types, therefore, cooperate to coordinate pollen wall deposition through a multilateral molecular dialogue.


Assuntos
Flores , Pólen , Regulação da Expressão Gênica de Plantas , Peptídeos/metabolismo , Pólen/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(16): e2201195119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412898

RESUMO

Most peptide hormones and growth factors are matured from larger inactive precursor proteins by proteolytic processing and further posttranslational modification. Whether or how posttranslational modifications contribute to peptide bioactivity is still largely unknown. We address this question here for TWS1 (Twisted Seed 1), a peptide regulator of embryonic cuticle formation in Arabidopsis thaliana. Using synthetic peptides encompassing the N- and C-terminal processing sites and the recombinant TWS1 precursor as substrates, we show that the precursor is cleaved by the subtilase SBT1.8 at both the N and the C termini of TWS1. Recognition and correct processing at the N-terminal site depended on sulfation of an adjacent tyrosine residue. Arginine 302 of SBT1.8 was found to be required for sulfotyrosine binding and for accurate processing of the TWS1 precursor. The data reveal a critical role for posttranslational modification, here tyrosine sulfation of a plant peptide hormone precursor, in mediating processing specificity and peptide maturation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hormônios Peptídicos , Processamento de Proteína Pós-Traducional , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Tirosina/metabolismo
17.
Annu Rev Plant Biol ; 73: 293-321, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35130443

RESUMO

In angiosperms, double fertilization triggers the concomitant development of two closely juxtaposed tissues, the embryo and the endosperm. Successful seed development and germination require constant interactions between these tissues, which occur across their common interface. The embryo-endosperm interface is a complex and poorly understood compound apoplast comprising components derived from both tissues, across which nutrients transit to fuel embryo development. Interface properties, which affect molecular diffusion and thus communication, are themselves dynamically regulated by molecular and physical dialogues between the embryo and endosperm. We review the current understanding of embryo-endosperm interactions, with a focus on the structure, properties, and function of their shared interface. Concentrating on Arabidopsis, but with reference to other species, we aim to situate recent findings within the broader context of seed physiology, developmental biology, and genetic factors such as parental conflicts over resource allocation.


Assuntos
Arabidopsis , Magnoliopsida , Arabidopsis/genética , Endosperma/genética , Germinação/fisiologia , Magnoliopsida/genética , Sementes/genética
18.
Curr Biol ; 30(5): 909-915.e4, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32155415

RESUMO

Germination sensu stricto in Arabidopsis involves seed-coat and endosperm rupture by the emerging seedling root. Subsequently, the cotyledons emerge rapidly from the extra-embryonic tissues of the seed, allowing autotrophic seedling establishment [1, 2]. Seedling survival depends upon the presence of an intact seedling cuticle that prevents dehydration, which has hitherto been assumed to form the interface between the newly germinated seedling and its environment [3-5]. Here, we show that in Arabidopsis, this is not the case. The primary interface between the emerging seedling and its environment is formed by an extra-cuticular endosperm-derived glycoprotein-rich structure called the sheath, which is maintained as a continuous layer at seedling surfaces during germination and becomes fragmented as cotyledons expand. Mutants lacking an endosperm-specific cysteine-rich peptide (KERBEROS [KRS]) show a complete loss of sheath production [6]. Although krs mutants have no defects in germination sensu stricto, they show delayed cotyledon emergence, a defect not observed in seedlings with defects in cuticle biosynthesis. Biophysical analyses reveal that the surfaces of wild-type cotyledons show minimal adhesion to silica beads in an aqueous environment at cotyledon emergence but that adhesion increases as cotyledons expand. In contrast, krs mutant cotyledons show enhanced adhesion at germination. Mutants with defects in cuticle biosynthesis, but no sheath defects, show a similar adhesion profile to wild-type seedlings at germination. We propose that the sheath reduces the adhesiveness of the cotyledon surface under the humid conditions necessary for seed germination and thus promotes seed-coat shedding and rapid seedling establishment.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Cotilédone/crescimento & desenvolvimento , Endosperma/crescimento & desenvolvimento , Germinação
19.
EMBO J ; 39(9): e103894, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32187732

RESUMO

Production of reactive oxygen species (ROS) by NADPH oxidases (NOXs) impacts many processes in animals and plants, and many plant receptor pathways involve rapid, NOX-dependent increases of ROS. Yet, their general reactivity has made it challenging to pinpoint the precise role and immediate molecular action of ROS. A well-understood ROS action in plants is to provide the co-substrate for lignin peroxidases in the cell wall. Lignin can be deposited with exquisite spatial control, but the underlying mechanisms have remained elusive. Here, we establish a kinase signaling relay that exerts direct, spatial control over ROS production and lignification within the cell wall. We show that polar localization of a single kinase component is crucial for pathway function. Our data indicate that an intersection of more broadly localized components allows for micrometer-scale precision of lignification and that this system is triggered through initiation of ROS production as a critical peroxidase co-substrate.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lignina/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/metabolismo , Peroxidases/metabolismo , Raízes de Plantas/metabolismo
20.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-32055398

RESUMO

The zygotic embryos of angiosperms develop buried deep within seeds and surrounded by two main extra-embryonic tissues: the maternally derived seed coat tissues and the zygotic endosperm. Generally, these tissues are considered to play an important role in nurturing the developing embryo by acting as conduits for maternally derived nutrients. They are also critical for key seed traits (dormancy establishment and control, longevity, and physical resistance) and thus for seed and seedling survival. However, recent studies have highlighted the fact that extra-embryonic tissues in the seed also physically and metabolically limit embryonic development and that unique mechanisms may have evolved to overcome specific developmental and genetic constraints associated with the seed habit in angiosperms. The aim of this review is to illustrate how these studies have begun to reveal the highly complex physical and physiological relationship between extra-embryonic tissues and the developing embryo. Where possible I focus on Arabidopsis because of space constraints, but other systems will be cited where relevant.


Assuntos
Arabidopsis/embriologia , Endosperma/embriologia , Magnoliopsida/embriologia , Sementes/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA