Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pediatr Orthop ; 39(9): 479-486, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31503237

RESUMO

BACKGROUND: Although physeal fractures and physeal bars can result in significant clinical consequences to growth and development of the injured physis, little orthopaedic research has focused upon this topic. Our objective was to extend a previously developed rat model to examine the immunohistochemical features following surgical application of techniques disrupting the physis. METHODS: Physes were surgically disrupted using fracture (control), epiphyseal scrape (ES), or epiphyseal drill (ED). After 1, 3, 6, 10, or 21 days, animals were euthanized, sites processed for histology and immunohistochemical localization of vascular endothelial growth factor (VEGF), Factor VIII, Sox-9, PTHrP (parathyroid hormone-related protein) and PTHrP-R (parathyroid hormone-related protein receptor) in resting, proliferative, and hypertrophic physeal zones. Incidence of physeal bars, vertical septa and islands within the metaphysis was quantified. Semiquantitative analysis of immunohistochemistry was performed. RESULTS: Physeal bars, vertical septa, and displaced cartilage islands were present each of the surgical treatments. Fisher's exact test showed a statistically significant increase in the presence of physeal bars (P=0.002) and vertical septa (P=0.012) in the ED group at 10 and 21 days. Analysis of VEGF showed significant differences among the surgical treatments involving the resting zone, and the proliferative zone for days 1, 6, and 21 (P≤0.02) with greater mean scores present in the fracture (control) group, followed by the ED group; the lowest scores were present in the ES group. PTHrP-R immunolocalization showed significant differences among treatments in the hypertrophic zone at days 6 and 21 (P=0.022 and 0.044, respectively). CONCLUSIONS: On the basis of the type of surgical treatment, results show significant differences in the presence of VEGF (reflecting the vascular bed) in the resting and proliferating zones at days 1, 6, and 21. VEGF localization was less abundant in the ED group (which had more physeal bars), suggesting that lack of vascular ingrowth plays a role in physeal bar formation. CLINICAL RELEVANCE: Basic science data presented here provide insight into the importance of the various regions of the physis and its repair and continued growth after physeal fracture. We suggest that a better understanding of the cellular basis of physeal arrest following physeal fracture may have future relevance for the development of treatments to prevent or correct arrest.


Assuntos
Lâmina de Crescimento/metabolismo , Fraturas Salter-Harris/metabolismo , Técnicas de Ablação , Animais , Epífises/lesões , Epífises/metabolismo , Fator VIII/metabolismo , Lâmina de Crescimento/cirurgia , Imuno-Histoquímica , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Ratos , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fraturas Salter-Harris/cirurgia , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
BMC Musculoskelet Disord ; 18(1): 182, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28482827

RESUMO

BACKGROUND: Back pain and disc degeneration have a growing socioeconomic healthcare impact. Mucin 1 (MUC1) is a transmembrane glycoprotein whose extracellular and intracellular domains participate in cellular signaling. Little is currently known about the presence or role of MUC1 in human disc degeneration. METHODS: In this IRB-approved research study, 29 human disc specimens were analyzed for MUC1 immunohistochemical localization and gene expression, and annulus fibrosus (annulus) cells were also isolated and cultured in 3D. Microarray analysis assessed expression levels of MUC1 in healthy and degenerated disc tissue and in cells exposed to proinflammatory cytokines (IL-1ß or TNF-α). RESULTS: MUC1 was shown to be present in annulus cells at the protein level using immunochemistry, and its expression was significantly upregulated in annulus tissue from more degenerated grade V discs compared to healthier grade I-II discs (p = 0.02). A significant positive correlation was present between the percentage of MUC1-positive cells and disc grade (p = 0.009). MUC1 expression in annulus cells cultured in 3D was also analyzed following exposure to IL-1ß or TNF-α; exposure produced significant MUC1 downregulation (p = 0.0006). CONCLUSIONS: Here we present the first data for the constitutive presence of MUC1 in the human disc, and its altered expression during disc degeneration. MUC1 may have an important role in disc aging and degeneration by acting as a regulator in the hypoxic environment, helping disc cells to survive under hypoxic conditions by stabilization and by activation of HIF-1α as previously recognized in pancreatic cancer cells.


Assuntos
Membrana Celular/metabolismo , Regulação para Baixo/fisiologia , Interleucina-1beta/farmacologia , Disco Intervertebral/metabolismo , Mucina-1/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adulto , Idoso , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Humanos , Lactente , Recém-Nascido , Disco Intervertebral/química , Disco Intervertebral/efeitos dos fármacos , Pessoa de Meia-Idade , Mucina-1/análise , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Adulto Jovem
3.
J Orthop Res ; 34(8): 1351-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27249627

RESUMO

Back pain and intervertebral disc degeneration have growing socioeconomic/health care impacts. Increasing research efforts address use of stem and progenitor cell-based replacement therapies to repopulate and regenerate the disc. Data presented here on the innate human annulus progenitor cells: (i) assessed osteogenic, chondrogenic and adipogenic potentials of cultured human annulus cells; and (ii) defined progenitor-cell related gene expression patterns. Verification of the presence of progenitor cells within primary human disc tissue also used immunohistochemical identification of cell surface markers and microarray analyses. Differentiation analysis in cell cultures demonstrated a viable progenitor cell pool within Thompson grades III-IV discs. Osteogenesis was present in 8 out of 11 cultures (73%), chondrogenesis in 8 of 11 (73%), and adipogenesis in 6 of 6 (100%). Immunolocalization was positive for CD29, CD44, CD105, and CD14 (mean values 80.2%, 81.5%, 85.1%, and 88.6%, respectively); localization of CD45 and CD34 was negative in disc tissue. Compared to controls, surgical discs showed significantly downregulated genes with recognized progenitor cell functions: TCF7L2 (2.7 fold), BMI1 (3.8 fold), FGF receptor 2 (2 fold), PAFAH1B1 (2.3 fold), and GSTP1 (9 fold). Compared to healthier grade I/II discs, grade III/IV discs showed significantly upregulated XRCC5 (3.6 fold), TCF7L2 (6 fold), GSTP1 (3.7 fold), and BMI1 (3 fold). Additional significant cell marker analyses showed expression of platelet-derived growth factor receptor alpha, CD90, CD73, and STRO-1. Statement of Clinical Significance: Findings provide the first identification of progenitor cells in annulus specimens from older, more degenerate discs (in contrast to earlier studies of healthier discs or nondegenerative specimens from teenagers). Findings also increase knowledge on progenitor cells present in the disc and suggest their value in potential future utilization for regeneration and disc cell therapy. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1351-1360, 2016.


Assuntos
Células-Tronco Adultas/fisiologia , Anel Fibroso/citologia , Adipogenia , Adulto , Idoso , Condrogênese , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Osteogênese
4.
J Orthop Res ; 34(8): 1456-65, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27155444

RESUMO

The relationship between neurotrophins produced by human annulus cells, such as neurotrophin-4 (NT4) and brain-derived neurotrophic factor (BDNF) which function in neurite survival and outgrowth, and nerve ingrowth into the disc remains poorly understood. In this work, we tested F11 neurite growth during exposure to control media, media with added nerve growth factor (NGF), conditioned media (CM) harvested from previous human annulus culture, or co-culture with annulus cells. Co-culture of F11 cells with annulus cells significantly increased media levels of amphiregulin, BDNF, glial-derived neurotrophic factor, and vascular endothelial growth factor compared to levels from in culture of F11 cells alone (p ≤ 0.04). Cell-based assays of neurite growth revealed that BDNF levels present in CM bore a significant (p = 0.01) positive relationship to neurite length and accounted for 38.5% of the change in neurite length. NT4 levels produced during co-culture with annulus cells bore a significant (p = 0.04) positive relationship to neurite length and accounted for 40.9% of the change in length. Statement of clinical significance: In vitro findings point to a potential role of annulus cells related to nerve ingrowth in vivo, and may have relevance in the outer annulus (where cell numbers are high) or in regions where nerves penetrate into annular tears or fissures. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1456-1465, 2016.


Assuntos
Anel Fibroso/inervação , Dor Lombar/etiologia , Fatores de Crescimento Neural/metabolismo , Neuritos/fisiologia , Adolescente , Adulto , Idoso , Anel Fibroso/metabolismo , Técnicas de Cocultura , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Spine (Phila Pa 1976) ; 40(11): 773-82, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26091153

RESUMO

STUDY DESIGN: Autophagy-related gene expression and ultrastructural features of autophagy were studied in human discs. OBJECTIVE: To obtain molecular/morphological data on autophagy in human disc degeneration and cultured human annulus cells exposed to proinflammatory cytokines. SUMMARY OF BACKGROUND DATA: Autophagy is an important process by which cytoplasm and organelles are degraded; this adaptive response to sublethal stresses (such as nutrient deprivation present in disc degeneration) supplies needed metabolites. Little is known about autophagic processes during disc degeneration. METHODS: Human disc specimens were obtained after institutional review board approval. Annulus mRNA was analyzed to determine autophagy-related gene expression levels. Immunolocalization and ultrastructural studies for p62, ATG3, ATG4B, ATG4C, ATG7, L3A, ULK-2, and beclin were conducted. In vitro experiments used IL-1ß- or TNF-α-treated human annulus cells to test for autophagy-related gene expression. RESULTS: More degenerated versus healthier discs showed significantly greater upregulation of well-recognized autophagy-related genes (P ≤ 0.028): beclin 1 (upregulated 1.6-fold); ATG8 (LC3) (upregulated 2.0-fold); ATG12 (upregulated 4.0-fold); presenilin 1 (upregulated 1.6-fold); cathepsin B (upregulated 4.5-fold). p62 was localized, and ultrastructure showed autophagic vacuolization and autophagosomes with complex, redundant whorls of membrane-derived material. In vitro, proinflammatory cytokines significantly upregulated autophagy-related genes (P ≤ 0.04): DRAM1 (6.24-fold); p62 (4.98-fold); PIM-2 oncogene, a positive regulator of autophagy (3-fold); WIPI49 (linked to starvation-induced autophagy) (upregulated 2.3-fold). CONCLUSION: Data provide initial molecular and morphological evidence for the presence of autophagy in the degenerating human annulus. In vivo gene analyses showed greater autophagy-related gene expression in more degenerated than healthier discs. In vitro data suggested a mechanism implicating a role of TNF-α and IL-1ß in disc autophagy. Findings suggest the importance of future work to investigate the relationship of autophagy to apoptosis, cell death, cell senescence, and mitochondrial dysfunction in the aging and degenerating disc. LEVEL OF EVIDENCE: N/A.


Assuntos
Autofagia/genética , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/ultraestrutura , Vértebras Lombares , RNA Mensageiro/análise , Sacro , Adulto , Idoso , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/genética , Autofagia/efeitos dos fármacos , Proteína 7 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteína Beclina-1 , Proteínas de Transporte/genética , Catepsina B/genética , Células Cultivadas , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Lactente , Interleucina-1beta/farmacologia , Disco Intervertebral/química , Degeneração do Disco Intervertebral/metabolismo , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Presenilina-1/genética , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/genética , Fator de Necrose Tumoral alfa/farmacologia , Enzimas Ativadoras de Ubiquitina/análise , Enzimas Ativadoras de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/análise , Enzimas de Conjugação de Ubiquitina/genética , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
6.
Exp Mol Pathol ; 98(1): 102-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527176

RESUMO

Chemokines are important secondary inflammatory mediators released in response to stimuli which act as second-order cytokines with specialized functions in inflammation. The role of many of these specialized mediators is as yet poorly understood in the human intervertebral disc. Here we investigated CCL2 (chemokine (C-C motif) ligand 2, also known as monocyte chemotactic protein-1 (MCP-1)) in a study of its immunolocalization in disc tissue, and then hypothesized that exposure of cultured human annulus cells to proinflammatory cytokines might alter CCL2 gene expression and CCL2 production. CLL2 was localized to many disc cells in both herniated and non-herniated tissue specimens. Molecular analyses showed that cells exposed to IL-1ß showed a 5.5 fold upregulation in CCL2 gene expression vs. controls, p=0.017. Cells exposed to TNF-α showed a 7.7 fold upregulation vs. controls, p=0.005. Cultured cells (grades II-V) showed increased MCP-1 production in IL1-ß-treated cells vs. controls (p=0.016), with no significant difference in production in TNF-α-treated cells. Local production of CCL2 in vivo and vitro suggests that annulus cells may be primary effector cells (as well as target cells), with the ability to mediate physiological immune-related processes during disc degeneration by both autocrine and paracrine signaling.


Assuntos
Quimiocina CCL2/metabolismo , Interleucina-1beta/farmacologia , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adulto , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Técnicas Imunoenzimáticas , Técnicas In Vitro , Lactente , Recém-Nascido , Disco Intervertebral/efeitos dos fármacos , Disco Intervertebral/imunologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/imunologia , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Adulto Jovem
7.
Spine J ; 14(12): 2995-3001, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24912122

RESUMO

BACKGROUND CONTEXT: Cortistatin (CST) is a recently discovered cyclic neuropeptide with biologic anti-inflammatory properties relevant to disc degeneration. PURPOSE: To test whether CST is present in the disc tissue, whether its expression is influenced by tumor necrosis factor-α (TNF-α), and whether it influences cell proliferation. STUDY DESIGN: Institutional review board-approved study using immunohistochemistry on human disc tissue, in vitro annulus cultures to determine the effect of CST on cell proliferation, and the effect of TNF-α on CST gene expression. PATIENT SAMPLE: Discs from 12 subjects used for immunohistochemistry, four annulus specimens used for cell culture with proinflammatory cytokines, and 11 used for cell proliferation analyses. OUTCOME MEASURES: Immunohistochemical localization of CST, gene expression of CST, and cell proliferation analyses. METHODS: Immunohistochemistry localized CST in disc tissue. Microarray analysis measured CST gene expression. Human annulus cells were exposed to CST for proliferation tests or cultured for the effect of TNF-α on CST expression. Standard statistical analyses were performed. RESULTS: Immunohistochemistry identified CST in outer annulus, inner annulus, and nucleus tissue. Annulus cells exposed to TNF-α revealed significantly lower CST expression (p=.013). Exposure to CST significantly increased proliferation. Quantitative real-time polymerase chain reaction also confirmed expression of CST in vitro. CONCLUSIONS: Data provide the first evidence that CST is present in the human disc. Addition of CST significantly increased cell proliferation. Cortistatin expression was significantly downregulated by TNF-α exposure in vitro. Findings suggest possible in vivo reduction of the anti-inflammatory actions of CST because of elevated proinflammatory cytokines during degenerating disc.


Assuntos
Anti-Inflamatórios/farmacologia , Disco Intervertebral/efeitos dos fármacos , Neuropeptídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Idoso , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Feminino , Humanos , Disco Intervertebral/citologia , Disco Intervertebral/metabolismo , Masculino , Pessoa de Meia-Idade , Neuropeptídeos/metabolismo , Fator de Necrose Tumoral alfa/genética
8.
Exp Mol Pathol ; 97(1): 1-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24768589

RESUMO

Matrix metalloproteinase-12 (MMP-12; macrophage metalloelastase) degrades a number of extracellular matrix components which are present in the intervertebral disc, including type IV collagen, fibronectin, laminin, chondroitin sulfates, elastin and fibrinogen. MMP-12 has recently discovered relationships with cytokines and chemokines which also relate to disc cell biology. To date, no study has assessed immunolocalization of MMP-12 in degenerating human intervertebral disc tissue. Immunocytochemical localization was performed on 18 human disc specimens and on lumbar spines of the sand rat, a small animal model with well-recognized age-related disc degeneration. In the human disc, intracellular localization was present in both the annulus and nucleus portions of the disc. The sand rat degenerating disc also showed MMP-12 disc localization, with additional presence in chondrocytes of the vertebral endplate of older animals. This is the initial characterization of the presence of MMP-12 in the human and sand rat disc, and in chondrocytes of the vertebral endplate in older sand rats with degenerating discs. Findings are important because they document the presence of an additional MMP-12 in disc tissue, thus expanding our understanding of disc extracellular matrix remodeling, and because they provide novel information on the presence of MMP-12 in the cartilage endplate as it undergoes sclerosis during disc degeneration in the aging sand rat.


Assuntos
Degeneração do Disco Intervertebral/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Adulto , Fatores Etários , Idoso , Animais , Pré-Escolar , Modelos Animais de Doenças , Feminino , Gerbillinae , Humanos , Lactente , Recém-Nascido , Vértebras Lombares/metabolismo , Masculino , Metaloproteinase 12 da Matriz/análise , Pessoa de Meia-Idade
9.
Exp Mol Pathol ; 96(2): 225-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24582800

RESUMO

Growth and differentiation factor-5 (GDF-5) is a member of the TGF-ß superfamily which regulates cell division and differentiation. GDF-5 attracted high interest because of its role in skeletal development, especially in cartilaginous sites. Little is known, however, about the role of GFD-5 in disc cell biology. The present work demonstrated the immunohistologic presence of GDF-5 in human outer and inner annulus tissue. Microarray analysis of annulus cells showed significant upregulation of GDF-5 expression in herniated vs. non-herniated lumbar discs (2.14-fold change, p=0.021). In vitro three-dimensional culture studies challenged human annulus cells with IL-1ß and TNF-α, two proinflammatory cytokines known to be elevated in the human degenerating disc. Exposure resulted in significant downregulation of GDF-5 during both TNF-α exposure (5.83-fold change, p=0.044) and IL-1ß exposure (3.38-fold change, p=0.015). In vitro findings suggest that the degenerating disc milieu, with high proinflammatory cytokine levels, may limit expression of GDF-5, resulting in limited regenerative capacity of the intact disc.


Assuntos
Fator 5 de Diferenciação de Crescimento/biossíntese , Interleucina-1beta/metabolismo , Deslocamento do Disco Intervertebral/genética , Fator de Necrose Tumoral alfa/metabolismo , Técnicas de Cultura de Células , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Interleucina-1beta/farmacologia , Disco Intervertebral/citologia , Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/patologia , Análise em Microsséries , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
10.
Clin Orthop Relat Res ; 472(6): 1936-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24515407

RESUMO

BACKGROUND: Disc space narrowing, osteophytes, and disc degeneration are common and increase with aging. Few animal models are appropriate for the study of spontaneous age-related cervical disc degeneration. QUESTIONS/PURPOSES: We used the sand rat, a member of the gerbil family with well-recognized age-related lumbar disc degeneration, to determine whether spontaneous cervical disc degeneration differed from lumbar degeneration when evaluated by (1) radiologic and (2) histologic measures. Animals 2 to 25 months of age were used in these analyses. METHODS: Cervical and lumbar discs of 99 sand rats were analyzed with radiology, and cervical discs of 67 sand rats were studied with histology. Lateral digital radiographs of cervical and lumbar spines were scored for presence or absence of wedging, disc space narrowing, osteophytes, end plate calcification, and irregular disc margins at C2-C3 through C6-C7 and T12-L1 through L7-S1. Percentages for presence were calculated and statistically analyzed for younger (range, 2-11.9 months old) versus older (range, 12.0-25 months old) animals. RESULTS: Cervical discs in younger animals exhibited a greater proportion of irregular margins compared with lumbar sites (94% versus 83%; p = 0.02; 95% CI for difference, 2.7, 19.0%). In older animals, cervical discs showed a greater proportion of osteophytes than did lumbar discs (7% versus 0%; p < 0.0001). The incidence of disc space narrowing was greater in cervical versus lumbar sites (99% versus 90%; p = 0.0008). Cervical spine sites which contained osteophytes morphologically showed irregular disc margins and revealed an extrusion of herniated disc material in the osteophytes. CONCLUSIONS: Radiologic and morphologic studies confirmed age-related disc degeneration in the cervical spine of the sand rat. CLINICAL RELEVANCE: Clinical cervical aging studies have shown that 14% of asymptomatic subjects younger than 40 years have abnormal MRI scans with an increase to 50% by 50 years old. We studied an economic rodent model for cervical age-related spontaneous disc.


Assuntos
Envelhecimento , Vértebras Cervicais , Degeneração do Disco Intervertebral/etiologia , Vértebras Lombares , Fatores Etários , Animais , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia , Modelos Animais de Doenças , Feminino , Gerbillinae , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/patologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Masculino , Radiografia
11.
Exp Mol Pathol ; 96(2): 133-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24468005

RESUMO

Chemokines act as important secondary inflammatory mediators which are released by cells in response to a variety of stimuli. Chemokines bind to cell surface receptors and act as second-order cytokines with specialized functions in inflammation. The role of RANTES (Regulated upon Activation, Normal T-cell Expressed, and Secreted) (also called CCL5 (chemokine (C-C motif) ligand 5)) has received little attention to date in disc tissue. Microarray analyses of lumbar disc annulus tissue revealed that RANTES expression was significantly upregulated in more degenerated Thompson grades IV and V discs compared to expression levels in grades I, II and III discs (p=0.032). Immunolocalization confirmed the presence of RANTES in the annulus and nucleus of the disc, and localized the RANTES receptors CCR1, CCR3 and CCR5 to cells in the disc. In vitro studies with IL-1-ß and TNF-α challenges, both proinflammatory cytokines resulted in elevated levels of RANTES in conditioned media (p<0.01); TNF-α exposure, however, produced significantly greater levels than did IL-1alpha (p<0.0001), suggesting a differential regulation by TNF-α. Local production of RANTES in vivo by annulus and nucleus cells, and in vitro induction of RANTES by proinflammatory cytokines suggest that disc cells are primary effector cells as well as target cells, and thus can mediate physiological immune-related processes during disc degeneration by both autocrine and paracrine signaling.


Assuntos
Quimiocina CCL5/biossíntese , Interleucina-1beta/biossíntese , Disco Intervertebral/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Técnicas de Cultura de Células , Linhagem Celular , Quimiocina CCL5/genética , Humanos , Disco Intervertebral/citologia , Análise em Microsséries , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Connect Tissue Res ; 54(6): 432-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24060054

RESUMO

Pregnancy-associated plasma protein-A (PAPP-A) is a metalloproteinase which cleaves IGF binding protein (BP)-4 in the extracellular matrix, making IGF available to nearby cells. We have shown that PAPP-A is present in the human intervertebral disc, and is significantly upregulated in more degenerated discs where increased proinflammatory cytokine levels are present. We hypothesized that increased proinflammatory cytokines present in the degenerating disc might be related to PAPP-A expression. Experiments exposed human annulus cells to IL-1-ß or TNF-α to test this hypothesis. Treated cells showed significantly increased PAPP-A in conditioned media versus controls (p < 0.001). PAPP-A production following exposure to IL-1ß was significantly greater in cells derived from more degenerated versus healthier discs (p = 0.05). PAPP-A gene expression (microarray analysis) was significantly upregulated in IL-1ß- or TNF-α-exposed cells (p = 0.01-0.004). Quantitative RT-PCR confirmed significant upregulation of IGFBP-4 in IL-1ß- or TNF-α-exposed cells. Data have potential relevance to future cell-based biologic therapies for disc degeneration.


Assuntos
Citocinas/farmacologia , Mediadores da Inflamação/farmacologia , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Disco Intervertebral/citologia , Proteína Plasmática A Associada à Gravidez/metabolismo , Somatomedinas/metabolismo , Disponibilidade Biológica , Demografia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Interleucina-1beta/farmacologia , Proteína Plasmática A Associada à Gravidez/genética , Fator de Necrose Tumoral alfa/farmacologia
13.
J Orthop Trauma ; 27(5): 290-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23609788

RESUMO

OBJECTIVES: This study focuses upon the morphologic and molecular features of the layer of cells, termed the "biomembrane," which forms around methacrylate spacers in bone segmental defects. The objective of this research was to assess the biomembrane formed in a novel rodent femoral segmental defect model at 4, 8, and 16 weeks with histologic and molecular studies. METHODS: Following Institutional Animal Care and Use Committee approval, a segmental defect was created in the rat femur and stabilized with the AO LockingRatNail and analyzed at 4, 8, and 16 weeks postsurgery using digital radiologic imaging, morphological and immunohistochemical studies, and genomewide gene expression studies employing microarray analysis. RESULTS: The biomembrane formed around the methacrylate spacer was rich in vasculature, which showed vascular endothelial growth factor immunolocalization. The biomembrane supported development of foci of bone and cartilage within it. Bone morphogenetic protein 2 immunolocalization and gene expression were positive within developing osseous and chondrocyte foci. Microarray analysis showed significant expression of key genes related to bone and cartilage formation and angiogenesis. CONCLUSIONS: This rat bone model was effective in creation of the biomembrane. Bone and cartilage foci were formed within the vascularized biomembrane with associated expression of genes critical for bone and cartilage development/formation and vascularization. The polymethyl methacrylate-induced biomembrane offers an exciting potential solution for segmental defects; the biomembrane, may act as a receptive bed and also serve as a source for mesenchymal stem cells, which could be recruited/directed for the healing process.


Assuntos
Fêmur/fisiopatologia , Consolidação da Fratura/fisiologia , Membranas/fisiopatologia , Ferimentos e Lesões/fisiopatologia , Animais , Materiais Biocompatíveis , Desenvolvimento Ósseo/genética , Desenvolvimento Ósseo/fisiologia , Proteína Morfogenética Óssea 2/biossíntese , Cartilagem/fisiologia , Modelos Animais de Doenças , Fêmur/lesões , Fêmur/cirurgia , Consolidação da Fratura/genética , Masculino , Membranas/irrigação sanguínea , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Polimetil Metacrilato , Próteses e Implantes , Ratos , Ratos Sprague-Dawley , Análise Serial de Tecidos , Transcriptoma , Ferimentos e Lesões/cirurgia
14.
Mol Pain ; 8: 63, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22963171

RESUMO

BACKGROUND: In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. RESULTS: Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. CONCLUSIONS: Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and chemokines which also have significant relevance to disc biology. Since the degenerating human disc is primarily an avascular tissue site into which disc cells have contributed high levels of proinflammatory cytokines, these substances are not cleared from the tissue and remain there over time. We hypothesize that as nerves grow into the human annulus, they encounter a proinflammatory cytokine-rich milieu which may sensitize nociceptors and exacerbate pain production.


Assuntos
Genoma Humano/genética , Degeneração do Disco Intervertebral/genética , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Fatores de Crescimento Neural/genética , Dor/genética , Nervos Espinhais/metabolismo , Adulto , Idoso , Peptídeo Relacionado com Gene de Calcitonina/genética , Estudos de Casos e Controles , Catecol O-Metiltransferase , Demografia , Feminino , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Disco Intervertebral/cirurgia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/cirurgia , Deslocamento do Disco Intervertebral/genética , Deslocamento do Disco Intervertebral/patologia , Masculino , Pessoa de Meia-Idade , Fatores de Crescimento Neural/metabolismo , Dor/patologia , Receptores da Bradicinina/metabolismo , Nervos Espinhais/patologia , Adulto Jovem
15.
Spine J ; 12(4): 329-35, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22424848

RESUMO

BACKGROUND CONTEXT: Carragee et al. have recently shown that modern discography injections are associated with subsequent acceleration of disc degeneration, herniation, and loss of disc height. Although needle puncture and pressurization are known trauma events that can create disc degeneration in animal models, another likely culprit in clinical discography-associated degeneration is a direct effect of the contrast agent itself on disc cells. PURPOSE: To test the hypothesis that discography contrast solution would have a deleterious effect on human annulus cells in vitro. STUDY DESIGN: An in vitro study using cultured human annulus cells to assay cell death, cell proliferation, and apoptosis. PATIENT SAMPLE: Annulus cells from eight surgical disc specimens were evaluated (two Thompson Grade III discs and six Grade IV discs) for cell death and proliferation, and an additional five cultures were tested for apoptosis. OUTCOME MEASURES: The proportion of dead and live cells, cell proliferation, and the proportion of apoptotic cells in control and experimental groups. METHODS: After internal review board approval, experimental design used two sets of controls: untreated cells under our normal culture conditions (control) and a set with added glucose to adjust the osmolality to match respective Isovue radiocontrast solution treatments (glucose controls) using a freezing point osmometer. Treated cells received Isovue 200 (iopamidol, Isovue-M 200; Bracco Diagnostics, Inc., Princeton, NJ, USA) at 12.5, 25, 50, or 100 mg/mL. Twenty thousand cells/well were seeded in triplicate in 24 well plates, control or test media added, and incubated for 24 hours. At termination, dead cells were identified with trypan blue staining and percentage dead cells determined. Cells were also tested to determine the percentage of apoptotic cells after 50 or 100 mg/mL Isovue exposures. Proliferation assays used standard plate reader methods. Statistical analysis used repeated measures analysis of variance with SAS software (version 9.2; SAS Institute, Inc., Cary, NC, USA). RESULTS: Analysis of cell death showed a significant increase in the percentage of dead cells with increasing Isovue concentrations compared with control cells (p=.018-.0008). Cell proliferation analyses showed significantly reduced division in Isovue-treated cells (p=.004), and apoptosis assays revealed a significantly higher proportion of apoptotic cells in cells exposed to 50 and 100 mg/mL Isovue (p=.016 and .0003, respectively). CONCLUSIONS: Discography is used extensively in the evaluation of low back pain. Because the lifetime prevalence of disc degeneration and low back pain is high (80% in the general population), many patients may undergo this procedure. Data presented here show that cells exposed in vitro to a radiocontrast agent with adjustments for osmolality have significantly reduced proliferation, increased cell death, and increased programmed cell death (apoptosis). In light of the well-recognized age- and degeneration-related decrease in disc cell numbers, it is possible that radiocontrast exposure may be contributing significantly to disc cell loss with subsequent progression of disc degeneration. Findings presented here provide a plausible cell-based explanation for the previously reported disc degeneration in patients receiving discography contrast solutions.


Assuntos
Apoptose/efeitos dos fármacos , Artrografia/efeitos adversos , Meios de Contraste/efeitos adversos , Disco Intervertebral/patologia , Iopamidol/efeitos adversos , Adulto , Artrografia/métodos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Humanos , Disco Intervertebral/efeitos dos fármacos , Vértebras Lombares/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sacro/patologia , Adulto Jovem
16.
J Orthop Res ; 30(8): 1198-212, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22246998

RESUMO

A layer of cells (the "biomembrane") has been identified in large segmental defects between bone and surgically placed methacrylate spacers or antibiotic-impregnated cement beads. We hypothesize that this contains a pluripotent stem cell population with potential valuable applications in orthopedic tissue engineering. Objectives using biomembranes harvested from rat segmental defects were to: (1) Culture biomembrane cells in specialized media to direct progenitor cells along bone or cartilage cell differentiation lineages; (2) evaluate harvested biomembranes for mesenchymal stem cell markers, and (3) define relevant gene expression patterns in harvested biomembranes using microarray analysis. Culture in osteogenic media produced mineralized nodules; culture in chondrogenic media produced masses containing chondroitin sulfate/sulfated proteoglycans. Molecular analysis of biomembrane cells versus control periosteum showed significant upregulation of key genes functioning in mesenchymal stem cell differentiation, development, maintenance, and proliferation. Results identified significant upregulation of WNT receptor signaling pathway genes and significant upregulation of BMP signaling pathway genes. Findings confirm that the biomembrane has a pluripotent stem cell population. The ability to heal large bone defects is clinically challenging, and novel tissue engineering uses of the biomembrane hold great promise in treating non-unions, open fractures with large bone loss and/or infections, and defects associated with tumor resection.


Assuntos
Condrogênese/fisiologia , Consolidação da Fratura/fisiologia , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Modelos Animais , Polimetil Metacrilato , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo , Engenharia Tecidual/métodos
17.
Exp Mol Pathol ; 92(1): 59-63, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21945733

RESUMO

Matrix metalloproteinase (MMP) regulation and expression is important in the aging/degenerating human intervertebral disc. MMP-26 (also known as matrilysin-2 or endometase) is a newly discovered MMP which degrades type IV collagen, fibronectin, fibrinogen, vitronectin, denatured collagen types I-IV, insulin-like growth factor binding protein 1, and activated pro-MMP-9. Our objective here was to determine if it is present in human disc tissue and cultured disc cells. Immunohistochemistry and microarray gene expression analyses were used to evaluate the presence of MMP-26 in human disc tissue from healthy and degenerated discs. Immunohistochemistry was also applied to human annulus cells cultured in a collagen sponge. Cellular and matrix localization of MMP-26 was identified in the outer and inner annulus and in the nucleus pulposus. Fewer cells showed localization in the inner vs. outer annulus, and localization was sparse in the nucleus. During in vitro culture of annulus cells, MMP-26 was also expressed. Molecular analyses showed significant downregulation of expression of MMP-26 (p=0.03), and significant 9.8-fold upregulation of TGF-beta (p=0.01) in more degenerated discs vs. healthier discs. Findings document the first identification of MMP-26 in the disc at the molecular and protein levels. Results point to the potentially important role of MMP-26 in matrix modulation during disc health and degeneration.


Assuntos
Degeneração do Disco Intervertebral/enzimologia , Disco Intervertebral/enzimologia , Metaloproteinases da Matriz Secretadas/genética , Metaloproteinases da Matriz Secretadas/metabolismo , Adulto , Idoso , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Lactente , Recém-Nascido , Disco Intervertebral/citologia , Degeneração do Disco Intervertebral/patologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
18.
Arthritis Res Ther ; 13(4): R140, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21880134

RESUMO

INTRODUCTION: Cathepsin K is a recently discovered cysteine protease which cleaves the triple helical domains of type I to II collagen. It has been shown to be up-regulated in synovial tissue from osteoarthritic and rheumatoid patients, and is a component in normal and nonarthritic cartilage, where it increases with aging. Studies on heart valve development have recently shown that receptor activator of nuclear factor-κB ligand (RANKL) acts during valve remodeling to promote cathepsin K expression. Since extracellular matrix remodeling is a critical component of disc structure and biomechanical function, we hypothesized that cathepsin K and RANKL may be present in the human intervertebral disc. METHODS: Studies were performed following approval of the authors' Human Subjects Institutional Review Board. Six annulus specimens from healthier Thompson grade I to II discs, and 12 specimens from more degenerate grade III to IV discs were utilized in microarray analysis of RANKL and cathepsin K gene expression. Immunohistochemistry was also performed on 15 additional disc specimens to assess the presence of RANKL and cathepsin K. RESULTS: Cathepsin K gene expression was significantly greater in more degenerated grade III to IV discs compared to healthier grade I to II discs (P = 0.001). RANKL was also identified with immunohistochemistry and molecular analyses. RANKL gene expression was also significantly greater in more degenerated discs compared to healthier ones (P = 0.0001). A significant linear positive correlation was identified between expression of cathepsin K and RANKL (r(2) = 92.2; P < 0.0001). CONCLUSIONS: Extracellular matrix remodeling is a key element of disc biology. Our use of an appropriate antibody and gene expression studies showed that cathepsin K is indeed present in the human intervertebral disc. Immunolocalization and molecular analyses also confirmed that RANKL is present in the human disc. Expression of RANKL was found to be significantly greater in more degenerated compared to healthier discs (P = 0.0001). Cathepsin K gene expression levels showed a positive, significant correlation with RANKL expression. Based on these data, we propose that cathepsin K plays a significant role in disc matrix remodeling and in matrix degradation in the proinflammatory cytokine-rich microenvironment of the degenerating disc.


Assuntos
Catepsina K/metabolismo , Matriz Extracelular/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Ligante RANK/metabolismo , Adulto , Idoso , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Adulto Jovem
19.
Spine J ; 11(8): 782-91, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21784712

RESUMO

BACKGROUND CONTEXT: Mitochondrial dysfunction is recognized during cell senescence and apoptosis, two important components of human disc aging/degeneration. We hypothesize that mitochondrial dysfunction is present in the degenerating and senescent annulus cells. The objective of the present study was to analyze gene expression profiles related to mitochondrial function in vivo. PURPOSE: This study had two objectives in the analysis of gene expression patterns related to mitochondria in the human annulus: First, to assess human annulus cells in a genome-wide microarray analysis approach to evaluate mitochondrial gene expression in annulus tissue from degenerated compared with healthier discs. Second, to use laser capture microdissection (LCM) to selectively isolate senescent versus nonsenescent annulus cells to evaluate their mitochondrial gene expression patterns. STUDY DESIGN: Following approval by our Human Subjects Institutional Review Board, annulus cells from 20 human lumbar discs were analyzed for gene groups related to mitochondrial function; a subset was also analyzed, which focused on senescent versus nonsenescent annulus cells in a study of annulus cells from 10 lumbar discs. PATIENT SAMPLE: Human annulus tissue was used in molecular studies following institutional review board approval. OUTCOME MEASURES: Gene expression levels identified with microarray analyses were statistically evaluated using GeneSifter Web-based software (VizX Labs, Seattle, WA, USA). METHODS: Human annulus specimens were assessed for gene expression related to mitochondrial function. Approaches used whole annulus tissue and senescent or nonsenescent annulus cells selectively harvested using LCM. Microarray data were analyzed using gene ontology searches and GeneSifter Web-based software. RESULTS: Analysis of annulus cells compared mitochondrial gene expression patterns in annulus cells from more degenerated discs with patterns in annulus cells derived from healthier discs. Important findings included significant upregulation of p53 and several proapoptotic genes (including apoptosis-inducing factor, mitochondrion-associated 1, BCL2-like 11 [an apoptosis facilitator]; caspase 7 apoptosis-related cysteine peptidase; proteasome 26S subunit nonadenosine triphosphatase 10, programmed cell death 6, and reticulon 3). Methionine sulfoxide reductase (Msr), a repair enzyme that reduces methionine sulfoxide residues in proteins damaged by oxidation, was also significantly upregulated (2.02-fold increase). The gene "membrane-associated ring finger (C3HC4) 5" was significantly upregulated and relevant because it is believed to play a role in preventing cell senescence acting to regulate mitochondrial quality control. Nitric oxide synthase 3 (endothelial nitric oxide synthase [eNOS]) showed a 5.9-fold downregulation in more degenerated versus healthier annulus cells. In LCM-harvested senescent cells, Msr was significantly downregulated in senescent versus nonsenescent cells, a finding previously recognized in other types of senescent cells. CONCLUSIONS: Novel data showed that significant gene expression patterns are present in the human annulus related to mitochondrial dysfunction; changes were identified in important genes involving apoptosis, eNOS and Msr expressions, and solute carrier genes. Because current research efforts are focusing on bioactive compounds for mitochondria, we suggest that future biologic cell-based therapies for annulus degeneration should also consider mitochondrial-focused therapies.


Assuntos
Senescência Celular/genética , Perfilação da Expressão Gênica , Degeneração do Disco Intervertebral/genética , Disco Intervertebral , Mitocôndrias/genética , Adulto , Idoso , Apoptose/genética , Feminino , Expressão Gênica , Humanos , Microdissecção e Captura a Laser , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Adulto Jovem
20.
Exp Mol Pathol ; 91(2): 534-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21689646

RESUMO

During disk degeneration, annulus dehydration and matrix fraying culminate in the formation of tears through which nucleus and annulus disk material may rupture, causing radicular pain. Annular tears are present in more than half of the patients in early adulthood and are almost always present in the elderly. Aggrecan, which provides the disk with a shock absorber function under loading, is a key disk extracellular matrix (ECM) component. The objective of the present study was to assess the immunolocalization of aggrecan in the annulus, and to assess molecular gene expression patterns in the annulus ECM utilizing microarray analysis. Immunohistochemistry was performed on 45 specimens using an anti-human aggrecan antibody. Affymetrix microarray gene expression studies used the extracellular matrix ontology approach to evaluate an additional 6 grade I-II, 9 grade III, and 4 grade IV disks. Grade III/IV disks were compared to healthier grade I/II disks. Healthy and less degenerated disks showed a general uniform aggrecan immunolocalization; more degenerated disks contained regions with little or no identifiable aggrecan localization. In degenerated disks, molecular studies showed a significant downregulation of aggrecan, ADAMTS-like 3, and ADAMTS10. Collagen types III and VIII, fibronectin, decorin, connective tissue growth factor, TIMP-3, latent TGF-ß binding protein 2 and TGF-ß1 were significantly upregulated with fold changes ranging from 2.4 to 9.8. Findings here help us better understand changes in the immunohistochemical distribution of a key proteoglycan during disk aging. Such information may have application as we work towards biologic therapies to improve the aging/degenerating disk matrix.


Assuntos
Agrecanas/genética , Agrecanas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Adulto , Idoso , Pré-Escolar , Demografia , Matriz Extracelular/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Masculino , Pessoa de Meia-Idade , Transporte Proteico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA