Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 347, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978420

RESUMO

BACKGROUND: Only a few studies dealt with the occurrence of endospore-forming clostridia in the microbiota of infants without obvious health complications. METHODS: A methodology pipeline was developed to determine the occurrence of endospore formers in infant feces. Twenty-four fecal samples (FS) were collected from one infant in monthly intervals and were subjected to variable chemical and heat treatment in combination with culture-dependent analysis. Isolates were identified by MALDI-TOF mass spectrometry, 16S rRNA gene sequencing, and characterized with biochemical assays. RESULTS: More than 800 isolates were obtained, and a total of 21 Eubacteriales taxa belonging to the Clostridiaceae, Lachnospiraceae, Oscillospiraceae, and Peptostreptococcaceae families were detected. Clostridium perfringens, C. paraputrificum, C. tertium, C. symbiosum, C. butyricum, and C. ramosum were the most frequently identified species compared to the rarely detected Enterocloster bolteae, C. baratii, and C. jeddahense. Furthermore, the methodology enabled the subsequent cultivation of less frequently detectable gut taxa such as Flavonifractor plautii, Intestinibacter bartlettii, Eisenbergiella tayi, and Eubacterium tenue. The isolates showed phenotypic variability regarding enzymatic activity, fermentation profiles, and butyrate production. CONCLUSIONS: Taken together, this approach suggests and challenges a cultivation-based pipeline that allows the investigation of the population of endospore formers in complex ecosystems such as the human gastrointestinal tract.


Assuntos
Clostridium , Microbiota , Lactente , Humanos , RNA Ribossômico 16S/genética , Clostridium/genética , Firmicutes/genética , Fezes/microbiologia
2.
Gut Microbes ; 15(1): 2241209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37592891

RESUMO

Previous studies indicated an intrinsic relationship between infant diet, intestinal microbiota composition and fermentation activity with a strong focus on the role of breastfeeding on microbiota composition. Yet, microbially formed short-chain fatty acids acetate, propionate and butyrate and other fermentation metabolites such as lactate not only act as substrate for bacterial cross-feeding and as mediators in microbe-host interactions but also confer antimicrobial activity, which has received considerably less attention in the past research. It was the aim of this study to investigate the nutritional-microbial interactions that contribute to the development of infant gut microbiota with a focus on human milk oligosaccharide (HMO) fermentation. Infant fecal microbiota composition, fermentation metabolites and milk composition were analyzed from 69 mother-infant pairs of the Swiss birth cohort Childhood AlleRgy nutrition and Environment (CARE) at three time points depending on breastfeeding status defined at the age of 4 months, using quantitative microbiota profiling, HPLC-RI and 1H-NMR. We conducted in vitro fermentations in the presence of HMO fermentation metabolites and determined the antimicrobial activity of lactate and acetate against major Clostridiaceae and Peptostreptococcaceae representatives. Our data show that fucosyllactose represented 90% of the HMOs present in breast milk at 1- and 3-months post-partum with fecal accumulation of fucose, 1,2-propanediol and lactate indicating fermentation of HMOs that is likely driven by Bifidobacterium. Concurrently, there was a significantly lower absolute abundance of Peptostreptococcaceae in feces of exclusively breastfed infants at 3 months. In vitro, lactate inhibited strains of Peptostreptococcaceae. Taken together, this study not only identified breastfeeding dependent fecal microbiota and metabolite profiles but suggests that HMO-derived fermentation metabolites might exert an inhibitory effect against selected gut microbes.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Feminino , Humanos , Lactente , Criança , Aleitamento Materno , Fermentação , Ácido Láctico/metabolismo , Leite Humano/química , Fezes/microbiologia , Oligossacarídeos/metabolismo , Clostridiales/metabolismo , Acetatos/metabolismo , Anti-Infecciosos/metabolismo
3.
Animals (Basel) ; 13(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37174565

RESUMO

Sarcina spp. has been isolated from the gastrointestinal tracts of diverse mammalian hosts. Their presence is often associated with host health complications, as is evident from many previously published medical case reports. However, only a handful of studies have made proper identification. Most other identifications were solely based on typical Sarcina-like morphology without genotyping. Therefore, the aim of this work was culture detection and the taxonomic classification of Sarcina isolates originating from different mammalian hosts. Sarcina-like colonies were isolated and collected during cultivation analyses of animal fecal samples (n = 197) from primates, dogs, calves of domestic cattle, elephants, and rhinoceroses. The study was carried out on apparently healthy animals kept in zoos or by breeders in the Czech Republic and Slovakia. Selected isolates were identified and compared using 16S rRNA gene sequencing and multi-locus sequence analysis (MLSA; Iles, pheT, pyrG, rplB, rplC, and rpsC). The results indicate the taxonomic variability of Sarcina isolates. S. ventriculi appears to be a common gut microorganism in various captive primates. In contrast, a random occurrence was also recorded in dogs. However, dog isolate N13/4e could represent the next potential novel Sarcina taxonomic unit. Also, a potentially novel Sarcina species was found in elephants, with occurrences in all tested hosts. S. maxima isolates were detected rarely, only in rhinoceroses. Although Sarcina bacteria are often linked to lethal diseases, our results indicate that Sarcina spp. appear to be a common member of the gut microbiota and seem to be an opportunistic pathogen. Further characterization and pathogenic analyses are required.

4.
Microorganisms ; 11(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110429

RESUMO

A balanced microbiota is a main prerequisite for the host's health. The aim of the present work was to develop defined pig microbiota (DPM) with the potential ability to protect piglets against infection with Salmonella Typhimurium, which causes enterocolitis. A total of 284 bacterial strains were isolated from the colon and fecal samples of wild and domestic pigs or piglets using selective and nonselective cultivation media. Isolates belonging to 47 species from 11 different genera were identified by MALDI-TOF mass spectrometry (MALDI-TOF MS). The bacterial strains for the DPM were selected for anti-Salmonella activity, ability to aggregate, adherence to epithelial cells, and to be bile and acid tolerant. The selected combination of 9 strains was identified by sequencing of the 16S rRNA gene as Bacillus sp., Bifidobacterium animalis subsp. lactis, B. porcinum, Clostridium sporogenes, Lactobacillus amylovorus, L. paracasei subsp. tolerans, Limosilactobacillus reuteri subsp. suis, and Limosilactobacillus reuteri (two strains) did not show mutual inhibition, and the mixture was stable under freezing for at least 6 months. Moreover, strains were classified as safe without pathogenic phenotype and resistance to antibiotics. Future experiments with Salmonella-infected piglets are needed to test the protective effect of the developed DPM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA