Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202400158, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619533

RESUMO

Carbon dots (C-dots) obtained from D-glucose have attracted great interest because of their properties and as a model for understanding the synthesis process and the origin of photoluminescence in carbon-based nanostructures. Synthesising C-dots under hydrothermal conditions has become one of the most common methods for their preparation. Understanding the details of this process is quite difficult. To tackle this challenge, we have adopted a multi-technique approach in our present work. We have correlated different spectroscopic analyses, such as infrared, Raman, fluorescence, NMR, and UV-Vis, to connect the emissions with specific chemical groups. In particular, in situ infrared analysis as a function of temperature has allowed following the formation of C=C, C=O, and COOH species and the rise of specific emissions. Only weak emissions due to n-π* transitions are detected upon post-synthesis thermal annealing.

2.
Nanomaterials (Basel) ; 13(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132987

RESUMO

The emergence of SARS-CoV-2 variants requires close monitoring to prevent the reoccurrence of a new pandemic in the near future. The Omicron variant, in particular, is one of the fastest-spreading viruses, showing a high ability to infect people and evade neutralization by antibodies elicited upon infection or vaccination. Therefore, the search for broad-spectrum antivirals that can inhibit the infectious capacity of SARS-CoV-2 is still the focus of intense research. In the present work, hyperbranched poly-L-lysine nanopolymers, which have shown an excellent ability to block the original strain of SARS-CoV-2 infection, were modified with L-arginine. A thermal reaction at 240 °C catalyzed by boric acid yielded Lys-Arg hyperbranched nanopolymers. The ability of these nanopolymers to inhibit viral replication were assessed for the original, Delta, and Omicron strains of SARS-CoV-2 together with their cytotoxicity. A reliable indication of the safety profile and effectiveness of the various polymeric compositions in inhibiting or suppressing viral infection was obtained by the evaluation of the therapeutic index in an in vitro prevention model. The hyperbranched L-arginine-modified nanopolymers exhibited a twelve-fold greater therapeutic index when tested with the original strain. The nanopolymers could also effectively limit the replication of the Omicron strain in a cell culture.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110990

RESUMO

The design of functional coatings for touchscreens and haptic interfaces is of paramount importance for smartphones, tablets, and computers. Among the functional properties, the ability to suppress or eliminate fingerprints from specific surfaces is one of the most critical. We produced photoactivated anti-fingerprint coatings by embedding 2D-SnSe2 nanoflakes in ordered mesoporous titania thin films. The SnSe2 nanostructures were produced by solvent-assisted sonication employing 1-Methyl-2-pyrrolidinone. The combination of SnSe2 and nanocrystalline anatase titania enables the formation of photoactivated heterostructures with an enhanced ability to remove fingerprints from their surface. These results were achieved through careful design of the heterostructure and controlled processing of the films by liquid phase deposition. The self-assembly process is unaffected by the addition of SnSe2, and the titania mesoporous films keep their three-dimensional pore organization. The coating layers show high optical transparency and a homogeneous distribution of SnSe2 within the matrix. An evaluation of photocatalytic activity was performed by observing the degradation of stearic acid and Rhodamine B layers deposited on the photoactive films as a function of radiation exposure time. FTIR and UV-Vis spectroscopies were used for the photodegradation tests. Additionally, infrared imaging was employed to assess the anti-fingerprinting property. The photodegradation process, following pseudo-first-order kinetics, shows a tremendous improvement over bare mesoporous titania films. Furthermore, exposure of the films to sunlight and UV light completely removes the fingerprints, opening the route to several self-cleaning applications.

4.
Chem Sci ; 13(45): 13264-13279, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36507165

RESUMO

The synthesis of ordered mesoporous films via self-assembly represents one of the main accomplishments in nanoscience. In fact, controlling the complex chemical-physical phenomena that govern the process triggered by the solvent's fast evaporation during film deposition has represented a challenging task. Several years after the first articles on the subject, the research in the field entered a new stage. New advanced applications based on the peculiar properties of mesoporous films are envisaged while basic research is still going on, especially to clarify the mechanism behind self-organization in a spatially defined environment and the physics and chemistry in mesoscale porosity. This review has been dedicated to analysing the main trends in the fields and the perspective for future developments.

5.
Sci Rep ; 12(1): 19719, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385123

RESUMO

Designing the architecture of L-lysine-based polymeric structures is a highly challenging task that requires careful control of the amino acid reactive groups. Conventional processes to obtain branched polylysine need several steps and the addition of specific catalysts. In the present work, to gain a better understanding and control of the formation of L-lysine-based polymers, we have investigated the correlation between the protonation state of L-lysine and the corresponding hydrothermally grown structures. The samples have been characterized by combining optical spectroscopies, such as UV-Vis, fluorescence, and synchrotron radiation circular dichroism with structural analysis by Nuclear Magnetic Resonance, Fourier Transform Infrared spectroscopy, and dynamic light scattering. We have observed that aqueous precursor solutions with alkaline pHs promote the formation of branched structures. In contrast, high pHs favour the reactivity of the ε-amino groups leading to linear structures, as shown by circular dichroism analyses. On the other hand, acidic conditions trigger the branching of the amino acid. Interestingly, the polymeric forms of L-lysine emit in the blue because the increasing number of intermolecular hydrogen bonds promote the intermolecular charge transfer responsible for the emission. Understanding the correlation between the L-lysine charged states and the polymeric structures that could form controlling the protonation-deprotonation states of the amino acid opens the route to a refined design of polypeptide systems based on L-lysine.


Assuntos
Peptídeos , Polilisina , Polilisina/química , Dicroísmo Circular , Peptídeos/química , Poli A , Aminoácidos , Polímeros
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121717, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35944345

RESUMO

l-lysine is an essential amino acid whose peculiar optical properties in aqueous solutions are still in search of a comprehensive explanation. In crystalline form l-lysine does not emit, but when in an aqueous solution, as the concentration increases, emits in the blue. The origin of such fluorescence is not yet clear. In the present article, we have combined quantum mechanics and classical simulations with experimental techniques to demonstrate that optical absorption and excitation-dependent fluorescence are directly correlated with the formation of aggregates, their dimensions and intermolecular interactions. The nature of the aggregates has been studied as a function of the pH and concentration of the amino acid. At low concentrations, fluorescence intensity increases linearly with molarity, while at high concentrations a new condition is established in which emitting and non-emitting molecular species coexist. The l-lysine aggregation and the formation of intermolecular H-bonding are at the ground of the emission in the blue range.


Assuntos
Lisina , Água , Aminoácidos/química , Fenômenos Químicos , Soluções/química , Espectrometria de Fluorescência , Água/química
7.
Nanomaterials (Basel) ; 12(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889575

RESUMO

The origin of fluorescence in carbon dots (C-dots) is still a puzzling phenomenon. The emission is, in most of the cases, due to molecular fluorophores formed in situ during the synthesis. The carbonization during C-dots processing does not allow, however, a fine control of the properties and makes finding the source of the fluorescence a challenging task. In this work, we present a strategy to embed a pre-formed fluorescent molecule, safranin O dye, into an amorphous carbonaceous dot obtained by citric acid carbonization. The dye is introduced in the melted solution of citric acid and after pyrolysis remains incorporated in a carbonaceous matrix to form red-emitting C-dots that are strongly resistant to photobleaching. Embedding dyes in amorphous C-dots represents an alternative method to optimize the emission in the whole visible spectrum.

8.
Nanomaterials (Basel) ; 12(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407192

RESUMO

Heterostructures formed by anatase nanotitania and bidimensional semiconducting materials are expected to become the next-generation photocatalytic materials with an extended operating range and higher performances. The capability of fabricating optically transparent photocatalytic thin films is also a highly demanded technological issue, and increasing the performances of such devices would significantly impact several applications, from self-cleaning surfaces to photovoltaic systems. To improve the performances of such devices, WS2/TiO2 heterostructures obtained by incorporating two-dimensional transition metal dichalcogenides layers into titania mesoporous ordered thin films have been fabricated. The self-assembly process has been carefully controlled to avoid disruption of the order during film fabrication. WS2 nanosheets of different sizes have been exfoliated by sonication and incorporated in the mesoporous films via one-pot processing. The WS2 nanosheets result as well-dispersed within the titania anatase mesoporous film that retains a mesoporous ordered structure. An enhanced photocatalytic response due to an interparticle electron transfer effect has been observed. The structural characterization of the heterostructure has revealed a tight interplay between the matrix and nanosheets rather than a simple additive co-catalyst effect.

9.
Materials (Basel) ; 15(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407731

RESUMO

Bioimaging supported by nanoparticles requires low cost, highly emissive and photostable systems with low cytotoxicity. Carbon dots (C-dots) offer a possible solution, even if controlling their properties is not always straightforward, not to mention their potentially simple synthesis and the fact that they do not exhibit long-term photostability in general. In the present work, we synthesized two C-dots starting from citric acid and tris (hydroxymethyl)-aminomethane (tris) or arginine methyl ester dihydrochloride. Cellular uptake and bioimaging were tested in vitro using murine neuroblastoma and ovine fibroblast cells. The C-dots are highly biocompatible, and after 24 h of incubation with the cells, 100% viability was still observed. Furthermore, the C-dots synthesized using tris have an average dimension of 2 nm, a quantum yield of 37%, high photostability and a zeta potential (ζ) around -12 mV. These properties favor cellular uptake without damaging cells and allow for very effective bioimaging.

10.
Biomater Sci ; 10(8): 1904-1919, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35297436

RESUMO

The outbreak of the Covid-19 pandemic due to the SARS-CoV-2 coronavirus has accelerated the search for innovative antivirals with possibly broad-spectrum efficacy. One of the possible strategies is to inhibit the replication of the virus by preventing or limiting its entry into the cells. Nanomaterials derived from lysine, an essential amino acid capable of forming homopeptides of different shapes and sizes through thermal polymerization, are an exciting antiviral option. In this review, we have critically compared the antiviral activities and mechanisms of action of lysine and its possible analogues in the form of linear, hyperbranched, dendrimer and nanoparticle polymers. The polycationic nature, as well as the structure of polylysine in its various forms, favours the electrostatic interaction with viruses by inhibiting their replication and endocytosis. In the case of lysine alone, the antiviral action is instead carried out inside the cell. The experimental results obtained so far show that the development of antivirals based on amino acids that inhibit the entry of viruses into cells represents a definite possibility for developing challenging solutions against present and future pandemics.


Assuntos
Tratamento Farmacológico da COVID-19 , Nanoestruturas , Antivirais/química , Antivirais/farmacologia , Humanos , Lisina , Pandemias , Polímeros/farmacologia , SARS-CoV-2
11.
ACS Omega ; 7(7): 5670-5678, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224328

RESUMO

Graphene-enhanced Raman scattering (GERS) produces enhancement of the Raman signal, which is based on chemical rather than electromagnetic mechanism such as in the surface-enhanced Raman scattering. Graphene oxide, amino- and guanidine-functionalized graphene oxide, exfoliated graphene, and commercial graphene nanoplatelets have been used to investigate the GERS response with the change of graphene properties. Different graphene nanostructures have been embedded into organic-inorganic microporous films to build a platform for the fast and sensitive detection of pesticides in water. The graphene nanostructures vary in the number of layers, lateral size, degree of oxidation, and surface functionalization. The GERS performances of the graphene nanostructures cast on silicon substrates and embedded in the nanocomposite films have been comparatively evaluated. After casting a few droplets of the pesticide aqueous solution on the graphene nanostructures, the Raman band enhancements of the analytes have been measured. In the nanocomposite films, the characteristic Raman bands originating from pesticides such as paraoxon, parathion, and glyphosate could be traced at concentrations below 10-7, 10-5, and 10-4 M, respectively. The results show that the surface functionalization reduces the GERS effect because it increases the ratio between the sp3 carbon and sp2 carbon. On the other hand, the comparison among different types of graphenes shows that the monolayers are more efficient than the few-layer nanostructures in enhancing the Raman signal.

12.
Materials (Basel) ; 14(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34832200

RESUMO

Fabrication of hydrophobic thin films from a liquid phase is a hot topic with critical technological issues. Interest in the production of hydrophobic surfaces is growing steadily due to their wide applications in several industrial fields. Thin films from liquid phases can be deposited on different types of surfaces using a wide variety of techniques, while the design of the precursor solution offers the possibility of fine-tuning the properties of the hydrophobic coating layers. A general trend is the design of multifunctional films, which have different properties besides being hydrophobic. In the present review, we have described the synthesis through sol-gel processing of hydrophobic films enlightening the main achievements obtained in the field.

13.
Nanoscale ; 13(39): 16465-16476, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34553728

RESUMO

The coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: community-based behaviours (i.e., isolation and social distancing), antiviral treatments, and vaccines. Although behaviour-based actions have produced significant benefits and several efficacious vaccines are now available, there is still an urgent need for treatment options. Remdesivir represents the first antiviral drug approved by the Food and Drug Administration for COVID-19 but has several limitations in terms of safety and treatment benefits. There is still a strong request for other effective, safe, and broad-spectrum antiviral systems in light of future emergent coronaviruses. Here, we describe a polymeric nanomaterial derived from L-lysine, with an antiviral activity against SARS-CoV-2 associated with a good safety profile in vitro. Nanoparticles of hyperbranched polylysine, synthesized by L-lysine's thermal polymerization catalyzed by boric acid, effectively inhibit the SARS-CoV-2 replication. The virucidal activity is associated with the charge and dimension of the nanomaterial, favouring the electrostatic interaction with the viral surface being only slightly larger than the virions' dimensions. Low-cost production and easiness of synthesis strongly support the further development of such innovative nanomaterials as a tool for potential treatments of COVID-19 and, in general, as broad-spectrum antivirals.


Assuntos
Antivirais , COVID-19 , Antivirais/farmacologia , Humanos , Pandemias , Polilisina , SARS-CoV-2
14.
Talanta ; 233: 122510, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215125

RESUMO

Exposure to styrene is a major safety concern in the fibreglass processing industry. This compound is classified by the International Agency for Research on Cancer as a possible human carcinogen. Several types of analytical equipment exist for detecting volatile organic compounds (VOCs) in the atmosphere; however, most of them operate ex-situ or do not provide easy discrimination between different molecules. This work introduces an improved and portable method based on FTIR spectroscopy to analyse toxic gaseous substances in working sites down to a concentration of less than 4 ppm. Styrene and a combination of VOCs typically associated with it in industrial processes, such as acetone, ethanol, xylene and isopropanol, have been used to calibrate and test the methodology. The results demonstrate that the technique offers the possibility to discriminate between different gaseous compounds in the atmosphere with a high degree of confidence and obtain very accurate quantitative information on their concentration, down to the ppm level, even when different VOCs are present in a mixture.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Atmosfera , Monitoramento Ambiental , Humanos , Estireno , Compostos Orgânicos Voláteis/análise
15.
Langmuir ; 37(17): 5348-5355, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33878872

RESUMO

The fabrication of optically active heterostructures in the shape of mesostructured thin films is a highly challenging task. It requires an integrated process to allow in one-step incorporating the two-dimensional materials within the mesoporous ordered host without disrupting the pore organization. Hexagonal boron nitride (BN) nanosheets have been successfully introduced into titania mesoporous films using a template-assisted sol-gel synthesis and evaporation-induced self-assembly. Two types of BN sheets have been used, with and without defects, to investigate the role of defects in heterostructure properties. It has been found that the defects increase the ultraviolet radiation A (UVA) absorbance and enhance the photocatalytic response of the film. The BN sheets are optically transparent and do not exhibit any photocatalytic property but contribute to anatase crystallization via heterogeneous nucleation.

16.
Chemistry ; 27(7): 2543-2550, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196126

RESUMO

Carbonized polymer dots (CPDs), a peculiar type of carbon dots, show extremely high quantum yields, making them very attractive nanostructures for application in optics and biophotonics. The origin of the strong photoluminescence of CPDs resides in a complicated interplay of several radiative mechanisms. To understand the correlation between CPD processing and properties, the early stage formation of carbonized polymer dots has been studied. In the synthesis, citric acid monohydrate and 2-amino-2-(hydroxymethyl)propane-1,3-diol have been thermally degraded at 180 °C. The use of an oil bath instead of a more traditional hydrothermal reactor has allowed the CPD properties to be monitored at different reactions times. Transmission electron microscopy, time-resolved photoluminescence, nuclear magnetic resonance, infrared, and Raman spectroscopy have revealed the formation of polymeric species with amide and ester bonds. Quantum chemistry calculations have been employed to investigate the origin of CPD electronic transitions. At short reaction times, amorphous C-dots with 80 % quantum yield, have been obtained.

17.
Chem Sci ; 11(26): 6606-6622, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-33033592

RESUMO

The appearance of new and lethal viruses and their potential threat urgently requires innovative antiviral systems. In addition to the most common and proven pharmacological methods, nanomaterials can represent alternative resources to fight viruses at different stages of infection, by selective action or in a broad spectrum. A fundamental requirement is non-toxicity. However, biocompatible nanomaterials have very often little or no antiviral activity, preventing their practical use. Carbon-based nanomaterials have displayed encouraging results and can present the required mix of biocompatibility and antiviral properties. In the present review, the main candidates for future carbon nanometric antiviral systems, namely graphene, carbon dots and fullerenes, have been critically analysed. In general, different carbon nanostructures allow several strategies to be applied. Some of the materials have peculiar antiviral properties, such as singlet oxygen emission, or the capacity to interfere with virus enzymes. In other cases, nanomaterials have been used as a platform for functional molecules able to capture and inhibit viral activity. The use of carbon-based biocompatible nanomaterials as antivirals is still an almost unexplored field, while the published results show promising prospects.

18.
Materials (Basel) ; 13(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824799

RESUMO

The origin of carbon-dots (C-dots) fluorescence and its correlation with the dots structure still lack a comprehensive model. In particular, the core-shell model does not always fit with the experimental results, which, in some cases, suggest a molecular origin of the fluorescence. To gain a better insight, we have studied the response of molecular-like fluorophores contained in the C-dots at extreme pH conditions. Citric acid and urea have been employed to synthesize blue and green-emitting C-dots. They show a different emission as a function of the pH of the dispersing media. The photoluminescence has been attributed to molecular-like fluorophores: citrazinic acid and 4-hydroxy-1H-pyrrolo[3,4-c]-pyridine-1,3,6-(2H,5H)-trione. 3D and time-resolved photoluminescence, ultraviolet-visible (UV-vis) spectroscopy, and dynamic light scattering have been used to determine the aggregation state, quantum yield and emission properties of the C-dots. The dependence of the C-dots blue and green components on the chemical environment indicates that the origin of fluorescence is due to molecular-like fluorophores.

19.
ACS Omega ; 5(19): 10958-10964, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32455216

RESUMO

Citrazinic acid (CZA) is a weakly fluorescent molecular compound whose optical properties are dependent on aggregation states and chemical environment. This molecule and its derivatives have been recently identified as the source of the intense blue emission of carbon dots obtained from citric acid with a nitrogen source, such as ammonia or urea. Citrazinic acid has a strong tendency to aggregate and form tautomers whose optical properties are largely unexplored. At extreme acidic and basic pH values, we have observed an "anomalous" optical response of citrazinic acid, attributed to the formation of aggregates from the tautomers. We have characterized the molecule, both at pH = 1 and 14, using UV-vis, NMR, steady-state, and time-resolved fluorescence spectroscopy. At extremely low pH values, the protonation causes luminescence quenching and the appearance of new emissions. On the contrary, high pH values are responsible for deprotonation and splitting of the excitation spectra.

20.
Sci Rep ; 10(1): 4770, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179839

RESUMO

Highly fluorescent blue and green-emitting carbon dots have been designed to be integrated into sol-gel processing of hybrid organic-inorganic materials through surface modification with an organosilane, 3-(aminopropyl)triethoxysilane (APTES). The carbon dots have been synthesised using citric acid and urea as precursors; the intense fluorescence exhibited by the nanoparticles, among the highest reported in the scientific literature, has been stabilised against quenching by APTES. When the modification is carried out in an aqueous solution, it leads to the formation of silica around the C-dots and an increase of luminescence, but also to the formation of large clusters which do not allow the deposition of optically transparent films. On the contrary, when the C-dots are modified in ethanol, the APTES improves the stability in the precursor sol even if any passivating thin silica shell does not form. Hybrid films containing APTES-functionalized C-dots are transparent with no traces of C-dots aggregation and show an intense luminescence in the blue and green range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA