Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nat Commun ; 15(1): 458, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302444

RESUMO

In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.


Assuntos
Neuroglia , Neurônios , Animais , Camundongos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Cerebelo/metabolismo , Ácido Glutâmico/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Células de Purkinje/metabolismo , Sinapses/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(38): e2301003120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695902

RESUMO

Clustered protocadherin (Pcdh) functions as a cell recognition molecule through the homophilic interaction in the central nervous system. However, its interactions have not yet been visualized in neurons. We previously reported PcdhγB2-Förster resonance energy transfer (FRET) probes to be applicable only to cell lines. Herein, we designed γB2-FRET probes by fusing FRET donor and acceptor fluorescent proteins to a single γB2 molecule and succeeded in visualizing γB2 homophilic interaction in cultured hippocampal neurons. The γB2-FRET probe localized in the soma and neurites, and FRET signals, which were observed at contact sites between neurites, eliminated by ethylene glycol tetraacetic acid (EGTA) addition. Live imaging revealed that the FRET-negative γB2 signals rapidly moved along neurites and soma, whereas the FRET-positive signals remained in place. We observed that the γB2 proteins at synapses rarely interact homophilically. The γB2-FRET probe might allow us to elucidate the function of the homophilic interaction and the cell recognition mechanism.


Assuntos
Neurônios , Protocaderinas , Neuritos , Corpo Celular , Comunicação Celular
3.
J Eur Acad Dermatol Venereol ; 37(7): 1385-1395, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36897437

RESUMO

BACKGROUND: The molecular pathogenesis of atopic dermatitis (AD), presenting skin barrier dysfunction and abnormal inflammations around 1-2 months, is unreported. OBJECTIVE: We aimed to examine the molecular pathogenesis of very early-onset AD by skin surface lipid-RNA (SSL-RNA) using a non-invasive technology in infants aged 1 and 2 months from a prospective cohort. METHODS: We collected sebum by oil-blotting film of infants aged 1 and 2 months and analysed RNAs in their sebum. We diagnosed AD according to the United Kingdom Working Party's criteria. RESULTS: Infants with AD aged 1 month showed lower expression of genes related to various lipid metabolism and synthesis, antimicrobial peptides, tight junctions, desmosomes and keratinization. They also had higher expression of several genes involved in Th2-, Th17- and Th22-type immune responses and lower expression of negative regulators of inflammation. In addition, gene expressions related to innate immunity were higher in AD infants. Infants aged 1 month with neonatal acne and diagnosed with AD aged 2 months already had gene expression patterns similar to AD aged 1 month in terms of redox, lipid synthesis, metabolism and barrier-related gene expression. CONCLUSION: We identified molecular changes in barrier function and inflammatory markers that characterize the pathophysiology of AD in infants aged 1 month. We also revealed that neonatal acne at 1 month could predict the subsequent development of AD by sebum transcriptome data.


Assuntos
Acne Vulgar , Dermatite Atópica , Lactente , Recém-Nascido , Humanos , Dermatite Atópica/diagnóstico , RNA Mensageiro , Estudos Prospectivos , Inflamação/patologia , Acne Vulgar/patologia , RNA , Lipídeos , Pele/patologia
4.
Acta Neuropathol ; 145(2): 235-255, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512060

RESUMO

DnaJ homolog, subfamily B, member 4, a member of the heat shock protein 40 chaperones encoded by DNAJB4, is highly expressed in myofibers. We identified a heterozygous c.270 T > A (p.F90L) variant in DNAJB4 in a family with a dominantly inherited distal myopathy, in which affected members have specific features on muscle pathology represented by the presence of cytoplasmic inclusions and the accumulation of desmin, p62, HSP70, and DNAJB4 predominantly in type 1 fibers. Both Dnajb4F90L knockin and knockout mice developed muscle weakness and recapitulated the patient muscle pathology in the soleus muscle, where DNAJB4 has the highest expression. These data indicate that the identified variant is causative, resulting in defective chaperone function and selective muscle degeneration in specific muscle fibers. This study demonstrates the importance of DNAJB4 in skeletal muscle proteostasis by identifying the associated chaperonopathy.


Assuntos
Miopatias Distais , Proteínas de Choque Térmico HSP40 , Animais , Camundongos , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Músculo Esquelético/patologia , Chaperonas Moleculares/genética , Debilidade Muscular/patologia , Miopatias Distais/patologia , Camundongos Knockout
5.
J Gen Physiol ; 154(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36200983

RESUMO

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum (SR) of the skeletal muscle and plays a critical role in excitation-contraction coupling. Mutations in RYR1 cause severe muscle diseases, such as malignant hyperthermia, a disorder of Ca2+-induced Ca2+ release (CICR) through RYR1 from the SR. We recently reported that volatile anesthetics induce malignant hyperthermia (MH)-like episodes through enhanced CICR in heterozygous R2509C-RYR1 mice. However, the characterization of Ca2+ dynamics has yet to be investigated in skeletal muscle cells from homozygous mice because these animals die in utero. In the present study, we generated primary cultured skeletal myocytes from R2509C-RYR1 mice. No differences in cellular morphology were detected between wild type (WT) and mutant myocytes. Spontaneous Ca2+ transients and cellular contractions occurred in WT and heterozygous myocytes, but not in homozygous myocytes. Electron microscopic observation revealed that the sarcomere length was shortened to ∼1.7 µm in homozygous myocytes, as compared to ∼2.2 and ∼2.3 µm in WT and heterozygous myocytes, respectively. Consistently, the resting intracellular Ca2+ concentration was higher in homozygous myocytes than in WT or heterozygous myocytes, which may be coupled with a reduced Ca2+ concentration in the SR. Finally, using infrared laser-based microheating, we found that heterozygous myocytes showed larger heat-induced Ca2+ transients than WT myocytes. Our findings suggest that the R2509C mutation in RYR1 causes dysfunctional Ca2+ dynamics in a mutant-gene dose-dependent manner in the skeletal muscles, in turn provoking MH-like episodes and embryonic lethality in heterozygous and homozygous mice, respectively.


Assuntos
Hipertermia Maligna , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Cálcio/metabolismo , Hipertermia Maligna/genética , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mutação
6.
iScience ; 25(8): 104800, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35992083

RESUMO

The human vesicular monoamine transporter 1 (VMAT1) harbors unique substitutions (Asn136Thr/Ile) that affect monoamine uptake into synaptic vesicles. These substitutions are absent in all known mammals, suggesting their contributions to distinct aspects of human behavior modulated by monoaminergic transmissions, such as emotion and cognition. To directly test the impact of these human-specific mutations, we introduced the humanized residues into mouse Vmat1 via CRISPR/Cas9-mediated genome editing and examined changes at the behavioral, neurophysiological, and molecular levels. Behavioral tests revealed reduced anxiety-related traits of Vmat1 Ile mice, consistent with human studies, and electrophysiological recordings showed altered oscillatory activity in the amygdala under anxiogenic conditions. Transcriptome analyses further identified changes in gene expressions in the amygdala involved in neurodevelopment and emotional regulation, which may corroborate the observed phenotypes. This knock-in mouse model hence provides compelling evidence that the mutations affecting monoaminergic signaling and amygdala circuits have contributed to the evolution of human socio-emotional behaviors.

7.
Proc Natl Acad Sci U S A ; 119(32): e2201286119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925888

RESUMO

Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum-targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels' heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.


Assuntos
Hipertermia Maligna , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Células HEK293 , Temperatura Alta , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/patologia , Proteínas de Membrana , Camundongos , Músculo Esquelético/metabolismo , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
8.
Commun Biol ; 5(1): 215, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264722

RESUMO

Non-invasive acquisition of mRNA data from the skin can be extremely useful for understanding skin physiology and diseases. Inspired by the holocrine process, in which the sebaceous glands secrete cell contents into the sebum, we focused on the possible presence of mRNAs in skin surface lipids (SSLs). We found that measurable levels of human mRNAs exist in SSLs, where the sebum protects them from degradation by RNases. The AmpliSeq transcriptome analysis was modified to measure SSL-RNA levels, and our results revealed that the SSL-RNAs predominantly comprised mRNAs derived from sebaceous glands, the epidermis, and hair follicles. Analysis of SSL-RNAs non-invasively collected from patients with atopic dermatitis revealed increased expression of inflammation-related genes and decreased expression of terminal differentiation-related genes, consistent with the results of previous reports. Further, we found that lipid synthesis-related genes were downregulated in the sebaceous glands of patients with atopic dermatitis. These results indicate that the analysis of SSL-RNAs is a promising strategy to understand the pathophysiology of skin diseases.


Assuntos
Dermatite Atópica , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Perfilação da Expressão Gênica , Humanos , Lipídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sebo/metabolismo
9.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35082173

RESUMO

The neuropeptide oxytocin (Oxt) plays important roles in modulating social behaviors. Oxt receptor (Oxtr) is abundantly expressed in the brain and its relationship to socio-behavioral controls has been extensively studied using mouse brains. Several genetic tools to visualize and/or manipulate Oxtr-expressing cells, such as fluorescent reporters and Cre recombinase drivers, have been generated by ES-cell based gene targeting or bacterial artificial chromosome (BAC) transgenesis. However, these mouse lines displayed some differences in their Oxtr expression profiles probably because of the complex context and integrity of their genomic configurations in each line. Here, we apply our sophisticated genome-editing techniques to the Oxtr locus, systematically generating a series of knock-in mouse lines, in which its endogenous transcriptional regulations are intactly preserved and evaluate their expression profiles to ensure the reliability of our new tools. We employ the epitope tagging strategy, with which C-terminally fused tags can be detected by highly specific antibodies, to successfully visualize the Oxtr protein distribution on the neural membrane with super-resolution imaging for the first time. By using T2A self-cleaving peptide sequences, we also induce proper expressions of tdTomato reporter, codon-improved Cre recombinase (iCre), and spatiotemporally inducible Cre-ERT2 in Oxtr-expressing neurons. Electrophysiological recordings from tdTomato-positive cells in the reporter mice support the validity of our tool design. Retro-orbital injections of AAV-PHP.eB vector into the Cre line further enabled visualization of recombinase activities in the appropriate brain regions. Moreover, the first-time Cre-ERT2 line drives Cre-mediated recombination in a spatiotemporally controlled manner on tamoxifen (TMX) administration. These tools thus provide an excellent resource for future functional studies in Oxt-responsive neurons and should prove of broad interest in the field.


Assuntos
Neurônios , Receptores de Ocitocina , Animais , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Reprodutibilidade dos Testes , Comportamento Social
10.
Pain Med ; 23(2): 375-395, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33844010

RESUMO

OBJECTIVE: To establish the efficacy of medications, incidence of adverse events (AEs), and withdrawal rates associated with the pharmacological management of chronic spinal cord injury pain. METHODOLOGY: PubMed, MEDLINE, Embase, CINAHL, Web of Science, CENTRAL, and PsycINFO were searched (November 2017) and updated (January 2020). Two independent review authors screened and identified papers for inclusion. RESULTS: Twenty-one studies met inclusion requirements for efficacy analysis and 17 for AE and withdrawal rate analysis; no additional papers were included from the updated 2020 search. Treatments were divided into six categories: anticonvulsants (n = 6), antidepressants (n = 3), analgesics (n = 8), anti-spasticity medications (n = 2), cannabinoids (n = 1), and other (n = 2). Trials of anticonvulsants, antidepressants, and cannabinoids included long-term follow-up trials (2 weeks to 4 months), and trials of analgesics and anti-spasticity medications, among others, were short-term trials (0-2 days). Effectiveness for neuropathic pain was found for pregabalin (3/3 studies) and lidocaine (2/3 studies). Studies using ketamine also reported effectiveness (2/2), but the quality of these papers was rated as poor. The most frequently reported AEs included dizziness, dry mouth, nausea, and constipation. Pregabalin was associated with a higher risk of somnolence (risk ratio [RR] 3.15, 95% confidence interval [CI]: 2.00-4.98) and dizziness (RR 2.9, 95% CI: 1.58-5.30). Ketamine was associated with a higher risk of reduced vision (RR 9.00, 95% CI: 0.05-146.11), dizziness (RR 8.33, 95% CI: 1.73-40.10), and somnolence (RR 7.00, 95% CI: 1.73-40.1). Withdrawal rates ranged from 18.4% for antidepressants to 0-30% for anticonvulsants, 0-10% for anti-spasticity medications, 0-48% for analgesics, 28.6% for cannabinoids, and 0-22.2% for other medications. CONCLUSION: Pregabalin was found to be effective for neuropathic pain vs placebo. Cannabinoids were ineffective for neuropathic pain. AEs are a common cause for withdrawal. The nature of AEs was poorly reported, and AE reporting should be improved in future randomized controlled trials.


Assuntos
Dor Crônica , Traumatismos da Medula Espinal , Analgésicos/efeitos adversos , Dor Crônica/tratamento farmacológico , Humanos , Náusea , Pregabalina , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico
11.
Exp Dermatol ; 31(2): 172-181, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34510552

RESUMO

Sensitive skin is a condition characterized by hypersensitivity to environmental stimuli, and its pathophysiology has not been fully elucidated. Questionnaires based on subjective symptoms, intervention tests, and measuring devices are used to diagnose sensitive skin; however, objective evaluation methods, including biomarkers, remain to be established. This study aimed to investigate the molecular profiles of self-reported sensitive skin, understand its pathophysiology and explore its biomarkers. Here, we analysed RNAs in skin surface lipids (SSL-RNAs), which can be obtained non-invasively by wiping the skin surface with an oil-blotting film, to compare the transcriptome profiles between questionnaire-based "sensitive" (n = 11) and "non-sensitive" (n = 10) skin participants. Exactly 417 differentially expressed genes in SSL-RNAs from individuals with sensitive skin were identified, of which C-C motif chemokine ligand 17 and interferon-γ pathways were elevated, while 50 olfactory receptor (OR) genes were downregulated. The expression of the detectable 101 OR genes was lower in individuals with sensitive skin compared to that in those with non-sensitive skin and was particularly associated with the subjective sensitivity among skin conditions. The receiver operating characteristic (ROC) curve demonstrated that the mean expression levels of OR genes in SSL-RNAs could discriminate subjective skin sensitivity with an area under the ROC curve of 0.836. SSL-RNA profiles suggest a mild inflammatory state in sensitive skin, and overall OR gene expression could be a potential indicator for sensitive skin.


Assuntos
Dermatopatias , Transcriptoma , Biomarcadores/metabolismo , Humanos , Lipídeos , RNA Mensageiro/metabolismo
12.
Dev Dyn ; 251(3): 525-535, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34542211

RESUMO

BACKGROUND: Repressor element 1-silencing transcription factor (REST) is a master regulator that is highly expressed in multipotent stem cells to repress gene networks involving a wide range of biological processes. A recent study has suggested that REST might be involved in a misregulation of its target genes in the embryonic brain of offspring derived from aged fathers. However, detailed analyses of the REST function in spermatogenesis are lacking due to difficulty in the detection of REST protein in specific cell types. RESULTS: To determine localization of REST, we generated an epitope tag knock-in (KI) mouse line with the C-terminus insertion of a podoplanin (PA)-tag at an endogenous Rest locus by the CRISPR/Cas9 system. Localization of the PA-tag was confirmed in neural stem cells marked with Pax6 in the embryonic brain. Moreover, PA-tagged REST was detected in undifferentiated and differentiating spermatogonia as well as Sertoli cells in both neonatal and adult testes. CONCLUSIONS: We demonstrate that REST is expressed at the early step of spermatogenesis and suggest a possibility that REST may modulate the epigenetic state of male germline cells. Our KI mice may be useful for studying REST-associated molecular mechanisms of neurodevelopmental and age-related disorders.


Assuntos
Edição de Genes , Testículo , Animais , Epitopos/genética , Epitopos/metabolismo , Masculino , Camundongos , Proteínas Repressoras , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/metabolismo , Fatores de Transcrição/metabolismo
13.
Dis Model Mech ; 14(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850861

RESUMO

Musculocontractural Ehlers-Danlos syndrome (mcEDS) is caused by generalized depletion of dermatan sulfate (DS) due to biallelic pathogenic variants in CHST14 encoding dermatan 4-O-sulfotransferase 1 (D4ST1) (mcEDS-CHST14). Here, we generated mouse models for mcEDS-CHST14 carrying homozygous mutations (1 bp deletion or 6 bp insertion/10 bp deletion) in Chst14 through CRISPR/Cas9 genome engineering to overcome perinatal lethality in conventional Chst14-deleted knockout mice. DS depletion was detected in the skeletal muscle of these genome-edited mutant mice, consistent with loss of D4ST1 activity. The mutant mice showed common pathophysiological features, regardless of the variant, including growth impairment and skin fragility. Notably, we identified myopathy-related phenotypes. Muscle histopathology showed variation in fiber size and spread of the muscle interstitium. Decorin localized diffusely in the spread endomysium and perimysium of skeletal muscle, unlike in wild-type mice. The mutant mice showed lower grip strength and decreased exercise capacity compared to wild type, and morphometric evaluation demonstrated thoracic kyphosis in mutant mice. The established CRISPR/Cas9-engineered Chst14 mutant mice could be a useful model to further our understanding of mcEDS pathophysiology and aid in the development of novel treatment strategies.


Assuntos
Síndrome de Ehlers-Danlos , Animais , Sistemas CRISPR-Cas/genética , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patologia , Feminino , Genômica , Camundongos , Camundongos Knockout , Gravidez , Sulfotransferases/genética , Sulfotransferases/metabolismo
14.
Front Cell Dev Biol ; 9: 695021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708033

RESUMO

Carbohydrate sulfotransferase 14 (CHST14) encodes dermatan 4-O-sulfotransferase 1, a critical enzyme for dermatan sulfate (DS) biosynthesis. Musculocontractural Ehlers-Danlos syndrome (mcEDS) is associated with biallelic pathogenic variants of CHST14 and is characterized by malformations and manifestations related to progressive connective tissue fragility. We identified myopathy phenotypes in Chst14-deficient mice using an mcEDS model. Decorin is a proteoglycan harboring a single glycosaminoglycan chain containing mainly DS, which are replaced with chondroitin sulfate (CS) in mcEDS patients with CHST14 deficiency. We studied the function of decorin in the skeletal muscle of Chst14-deficient mice because decorin is important for collagen-fibril assembly and has a myokine role in promoting muscle growth. Although decorin was present in the muscle perimysium of wild-type (Chst14+/+ ) mice, decorin was distributed in the muscle perimysium as well as in the endomysium of Chst14-/- mice. Chst14-/- mice had small muscle fibers within the spread interstitium; however, histopathological findings indicated milder myopathy in Chst14-/- mice. Myostatin, a negative regulator of protein synthesis in the muscle, was upregulated in Chst14-/- mice. In the muscle of Chst14-/- mice, decorin was downregulated compared to that in Chst14+/+ mice. Chst14-/- mice showed altered cytokine/chemokine balance and increased fibrosis, suggesting low myogenic activity in DS-deficient muscle. Therefore, DS deficiency in mcEDS causes pathological localization and functional abnormalities of decorin, which causes disturbances in skeletal muscle myogenesis.

15.
Sci Rep ; 11(1): 18550, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545158

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease presenting with motor and non-motor symptoms, including skin disorders (seborrheic dermatitis, bullous pemphigoid, and rosacea), skin pathological changes (decreased nerve endings and alpha-synuclein deposition), and metabolic changes of sebum. Recently, a transcriptome method using RNA in skin surface lipids (SSL-RNAs) which can be obtained non-invasively with an oil-blotting film was reported as a novel analytic method of sebum. Here we report transcriptome analyses using SSL-RNAs and the potential of these expression profiles with machine learning as diagnostic biomarkers for PD in double cohorts (PD [n = 15, 50], controls [n = 15, 50]). Differential expression analysis between the patients with PD and healthy controls identified more than 100 differentially expressed genes in the two cohorts. In each cohort, several genes related to oxidative phosphorylation were upregulated, and gene ontology analysis using differentially expressed genes revealed functional processes associated with PD. Furthermore, machine learning using the expression information obtained from the SSL-RNAs was able to efficiently discriminate patients with PD from healthy controls, with an area under the receiver operating characteristic curve of 0.806. This non-invasive gene expression profile of SSL-RNAs may contribute to early PD diagnosis based on the neurodegeneration background.


Assuntos
Aprendizado de Máquina , Doença de Parkinson/diagnóstico , Sebo/metabolismo , Transcriptoma , Idoso , Biomarcadores , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosforilação
16.
Nat Commun ; 12(1): 4293, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257294

RESUMO

Mutations in the type 1 ryanodine receptor (RyR1), a Ca2+ release channel in skeletal muscle, hyperactivate the channel to cause malignant hyperthermia (MH) and are implicated in severe heat stroke. Dantrolene, the only approved drug for MH, has the disadvantages of having very poor water solubility and long plasma half-life. We show here that an oxolinic acid-derivative RyR1-selective inhibitor, 6,7-(methylenedioxy)-1-octyl-4-quinolone-3-carboxylic acid (Compound 1, Cpd1), effectively prevents and treats MH and heat stroke in several mouse models relevant to MH. Cpd1 reduces resting intracellular Ca2+, inhibits halothane- and isoflurane-induced Ca2+ release, suppresses caffeine-induced contracture in skeletal muscle, reduces sarcolemmal cation influx, and prevents or reverses the fulminant MH crisis induced by isoflurane anesthesia and rescues animals from heat stroke caused by environmental heat stress. Notably, Cpd1 has great advantages of better water solubility and rapid clearance in vivo over dantrolene. Cpd1 has the potential to be a promising candidate for effective treatment of patients carrying RyR1 mutations.


Assuntos
Bloqueadores dos Canais de Cálcio/uso terapêutico , Cálcio/metabolismo , Hipertermia Maligna/tratamento farmacológico , Hipertermia Maligna/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Halotano/farmacologia , Isoflurano/farmacologia , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mutação/genética
17.
Cells ; 10(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946570

RESUMO

Fluorescent reporter mouse lines and Cre/Flp recombinase driver lines play essential roles in investigating various molecular functions in vivo. Now that applications of the CRISPR/Cas9 genome-editing system to mouse fertilized eggs have drastically accelerated these knock-in mouse generations, the next need is to establish easier, quicker, and cheaper methods for knock-in donor preparation. Here, we reverify and optimize the phospho-PCR method to obtain highly pure long single-stranded DNAs (ssDNAs) suitable for knock-in mouse generation via genome editing. The sophisticated sequential use of two exonucleases, in which double-stranded DNAs (dsDNAs) amplified by a pair of 5'-phosphorylated primer and normal primer are digested by Lambda exonuclease to yield ssDNA and the following Exonuclease III treatment degrades the remaining dsDNAs, enables much easier long ssDNA productions without laborious gel extraction steps. By microinjecting these donor DNAs along with CRISPR/Cas9 components into mouse zygotes, we have effectively generated fluorescent reporter lines and recombinase drivers. To further broaden the applicability, we have prepared long ssDNA donors in higher concentrations and electroporated them into mouse eggs to successfully obtain knock-in embryos. This classical yet improved method, which is regaining attention on the progress of CRISPR/Cas9 development, shall be the first choice for long donor DNA preparation, and the resulting knock-in lines could accelerate life science research.


Assuntos
DNA de Cadeia Simples/normas , Técnicas de Introdução de Genes/métodos , Animais , Sistemas CRISPR-Cas , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Eletroporação/métodos , Edição de Genes/métodos , Camundongos , Camundongos Transgênicos , Microinjeções/métodos , Reação em Cadeia da Polimerase/métodos , Zigoto/metabolismo
18.
Acta Neuropathol Commun ; 8(1): 206, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256836

RESUMO

The Ihara epileptic rat (IER) is a mutant model with limbic-like seizures whose pathology and causative gene remain elusive. In this report, via linkage analysis, we identified Down syndrome cell adhesion molecule-like 1(Dscaml1) as the responsible gene for IER. A single base mutation in Dscaml1 causes abnormal splicing, leading to lack of DSCAML1. IERs have enhanced seizure susceptibility and accelerated kindling establishment. Furthermore, GABAergic neurons are severely reduced in the entorhinal cortex (ECx) of these animals. Voltage-sensitive dye imaging that directly presents the excitation status of brain slices revealed abnormally persistent excitability in IER ECx. This suggests that reduced GABAergic neurons may cause weak sustained entorhinal cortex activations, leading to natural kindling via the perforant path that could cause dentate gyrus hypertrophy and epileptogenesis. Furthermore, we identified a single nucleotide substitution in a human epilepsy that would result in one amino acid change in DSCAML1 (A2105T mutation). The mutant DSCAML1A2105T protein is not presented on the cell surface, losing its homophilic cell adhesion ability. We generated knock-in mice (Dscaml1A2105T) carrying the corresponding mutation and observed reduced GABAergic neurons in the ECx as well as spike-and-wave electrocorticogram. We conclude that DSCAML1 is required for GABAergic neuron placement in the ECx and suppression of seizure susceptibility in rodents. Our findings suggest that mutations in DSCAML1 may affect seizure susceptibility in humans.


Assuntos
Moléculas de Adesão Celular/genética , Córtex Entorrinal/patologia , Neurônios GABAérgicos/patologia , Convulsões/genética , Animais , Eletroencefalografia , Predisposição Genética para Doença , Excitação Neurológica/genética , Camundongos , Ratos , Ratos Mutantes
19.
BMC Med ; 18(1): 343, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33208172

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive, degenerative muscular disorder and cognitive dysfunction caused by mutations in the dystrophin gene. It is characterized by excess inflammatory responses in the muscle and repeated degeneration and regeneration cycles. Neutral sphingomyelinase 2/sphingomyelin phosphodiesterase 3 (nSMase2/Smpd3) hydrolyzes sphingomyelin in lipid rafts. This protein thus modulates inflammatory responses, cell survival or apoptosis pathways, and the secretion of extracellular vesicles in a Ca2+-dependent manner. However, its roles in dystrophic pathology have not yet been clarified. METHODS: To investigate the effects of the loss of nSMase2/Smpd3 on dystrophic muscles and its role in the abnormal behavior observed in DMD patients, we generated mdx mice lacking the nSMase2/Smpd3 gene (mdx:Smpd3 double knockout [DKO] mice). RESULTS: Young mdx:Smpd3 DKO mice exhibited reduced muscular degeneration and decreased inflammation responses, but later on they showed exacerbated muscular necrosis. In addition, the abnormal stress response displayed by mdx mice was improved in the mdx:Smpd3 DKO mice, with the recovery of brain-derived neurotrophic factor (Bdnf) expression in the hippocampus. CONCLUSIONS: nSMase2/Smpd3-modulated lipid raft integrity is a potential therapeutic target for DMD.


Assuntos
Distrofia Muscular de Duchenne/genética , Esfingomielina Fosfodiesterase/metabolismo , Animais , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Distrofina/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout
20.
Commun Biol ; 3(1): 574, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060832

RESUMO

Individual cell shape and integrity must precisely be orchestrated during morphogenesis. Here, we determine function of type II cadherins, Cdh6, Cdh8, and Cdh11, whose expression combinatorially demarcates the mouse neural plate/tube. While CRISPR/Cas9-based single type II cadherin mutants show no obvious phenotype, Cdh6/8 double knockout (DKO) mice develop intermingled forebrain/midbrain compartments as these two cadherins' expression opposes at the nascent boundary. Cdh6/8/11 triple, Cdh6/8 or Cdh8/11 DKO mice further cause exencephaly just within the cranial region where mutated cadherins' expression merges. In the Cdh8/11 DKO midbrain, we observe less-constricted apical actin meshwork, ventrally-directed spreading, and occasional hyperproliferation among dorsal neuroepithelial cells as origins for exencephaly. These results provide rigid evidence that, by conferring distinct adhesive codes to each cell, redundant type II cadherins serve essential and shared roles in compartmentalization and neurulation, both of which proceed under the robust control of the number, positioning, constriction, and fluidity of neuroepithelial cells.


Assuntos
Caderinas/genética , Caderinas/metabolismo , Células Neuroepiteliais/metabolismo , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Mapeamento Cromossômico , Desenvolvimento Embrionário/genética , Imunofluorescência , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Genômica/métodos , Humanos , Imuno-Histoquímica , Camundongos , Placa Neural/embriologia , Placa Neural/metabolismo , Tubo Neural/embriologia , Tubo Neural/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA