Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 81(8-9): 915-20, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10572306

RESUMO

A myriad different constituents or elements (genes, proteins, lipids, ions, small molecules etc.) participate in numerous physico-chemical processes to create bacteria that can adapt to their environments to survive, grow and, via the cell cycle, reproduce. We explore the possibility that it is too difficult to explain cell cycle progression in terms of these elements and that an intermediate level of explanation is needed. This level is that of hyperstructures. A hyperstructure is large, has usually one particular function, and contains many elements. Non-equilibrium, or even dissipative, hyperstructures that, for example, assemble to transport and metabolize nutrients may comprise membrane domains of transporters plus cytoplasmic metabolons plus the genes that encode the hyperstructure's enzymes. The processes involved in the putative formation of hyperstructures include: metabolite-induced changes to protein affinities that result in metabolon formation, lipid-organizing forces that result in lateral and transverse asymmetries, post-translational modifications, equilibration of water structures that may alter distributions of other molecules, transertion, ion currents, emission of electromagnetic radiation and long range mechanical vibrations. Equilibrium hyperstructures may also exist such as topological arrays of DNA in the form of cholesteric liquid crystals. We present here the beginning of a picture of the bacterial cell in which hyperstructures form to maximize efficiency and in which the properties of hyperstructures drive the cell cycle.


Assuntos
Bactérias/citologia , Bactérias/metabolismo , Ciclo Celular/fisiologia , Modelos Biológicos , Bactérias/genética , Replicação do DNA , Genes Bacterianos , Substâncias Macromoleculares , Organelas/metabolismo
2.
Biosystems ; 39(3): 187-226, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8894122

RESUMO

Microtubules are ubiquitous components of the cytoskeleton. They participate in many motility processes ranging from intracellular transport or chromosome movement during mitosis to ciliary and flagellar beating. The biophysical mechanism inherent in the generation and control of movement in all these motility phenomena has not yet been entirely elucidated. The authors propose a new model based on a charge transfer mechanism capable of shedding a new light on the molecular foundations of all motility processes. Electron transfer along the microtubular lattice is responsible for activation and control of all microtubule-associated ATPases (i.e. force generating enzymes). Microtubules are thus shown to be the basic motors of cell dynamics. The model is first applied to intracellular transport and ciliary and flagellar beating. Through two additional examples, the authors show the heuristic capabilities of the suggested hypothesis. The application of charge transfer control to the Protozoan Euglena gracilis leads to a plausible model capable of accounting for its phototactic response mechanism. Furthermore, the model allows a new interpretation of the electrophysiological response in vertebrate photoreceptors.


Assuntos
Movimento Celular , Citoesqueleto , Microtúbulos , Modelos Biológicos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA