Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Med Robot Res ; 9(1-2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948444

RESUMO

Flexible needle insertion procedures are common in minimally-invasive surgeries for diagnosing and treating prostate cancer. Bevel-tip needles provide physicians the capability to steer the needle during long insertions to avoid vital anatomical structures in the patient and reduce post-operative patient discomfort. To provide needle placement feedback to the physician, sensors are embedded into needles for determining the real-time 3D shape of the needle during operation without needing to visualize the needle intra-operatively. Through expansive research in fiber optics, a plethora of bio-compatible, MRI-compatible, optical shape-sensors have been developed to provide real-time shape feedback, such as single-core and multicore fiber Bragg gratings. In this paper, we directly compare single-core fiber-based and multicore fiber-based needle shape-sensing through similarly constructed, four-active area sensorized bevel-tip needles inserted into phantom and ex-vivo tissue on the same experimental platform. In this work, we found that for shape-sensing in phantom tissue, the two needles performed identically with a p-value of 0.164 > 0.05, but in ex-vivo real tissue, the single-core fiber sensorized needle significantly outperformed the multicore fiber configuration with a p-value of 0.0005 < 0.05. This paper also presents the experimental platform and method for directly comparing these optical shape sensors for the needle shape-sensing task, as well as provides direction, insight and required considerations for future work in constructively optimizing sensorized needles.

2.
ArXiv ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37731661

RESUMO

Flexible needle insertion procedures are common for minimally-invasive surgeries for diagnosing and treating prostate cancer. Bevel-tip needles provide physicians the capability to steer the needle during long insertions to avoid vital anatomical structures in the patient and reduce post-operative patient discomfort. To provide needle placement feedback to the physician, sensors are embedded into needles for determining the real-time 3D shape of the needle during operation without needing to visualize the needle intra-operatively. Through expansive research in fiber optics, a plethora of bio-compatible, MRI-compatible, optical shape-sensors have been developed to provide real-time shape feedback, such as single-core and multicore fiber Bragg gratings. In this paper, we directly compare single-core fiber-based and multicore fiber-based needle shape-sensing through identically constructed, four-active area sensorized bevel-tip needles inserted into phantom and ex-vivo tissue on the same experimental platform. In this work, we found that for shape-sensing in phantom tissue, the two needles performed identically with a p-value of 0.164 > 0.05, but in ex-vivo real tissue, the single-core fiber sensorized needle significantly outperformed the multicore fiber configuration with a p-value of 0.0005 < 0.05. This paper also presents the experimental platform and method for directly comparing these optical shape sensors for the needle shape-sensing task, as well as provides direction, insight and required considerations for future work in constructively optimizing sensorized needles.

3.
Int Symp Med Robot ; 20232023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37292169

RESUMO

Bevel-tip needles are commonly utilized in percutaneous medical interventions where a curved insertion trajectory is required. To avoid deviation from the intended trajectory, needle shape sensing and tip localization is crucial in providing the operator with feedback. There is an abundance of previous work that investigate the medical application of fiber Bragg grating (FBG) sensors, but most works select only one specific type of fiber among the many available sensor options to integrate into their hardware designs. In this work, we compare two different types of FBG sensors under identical conditions and application, namely, acting as the sensor for needle insertion shape reconstruction. We built a three-channel single core needle and a seven-channel multicore fiber (MCF) needle and discuss the pros and cons of both constructions for shape sensing experiments into constant curvature jigs. The overall needle tip error is 1.23 mm for the single core needle and 2.08 mm for the multicore needle.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4397-4401, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086006

RESUMO

The determination of flexible needle shape during insertion is critical for planning and validation in minimally invasive surgical percutaneous procedures. In this paper, we validate a needle shape-sensing method using fiber Bragg grating (FBG) sensors over sequential needle insertion lengths in gel phantom and real tissue. Experiments on a four-active area, FBG-sensorized needle were performed in both isotropic simulated tissue and inhomogeneous animal tissue with computed tomography (CT) as the ground truth of the needle shape. The results show that the needle shape obtained from the FBG sensors has an overall consistent accuracy in real tissue in comparison to the phantom gel. The results validate a viable 3D needle shape-sensing model and reconstruction method over various insertion depths in comparison to the needle shapes determined from CT in both gel phantom and real tissue.


Assuntos
Agulhas , Tomografia Computadorizada por Raios X , Animais , Procedimentos Cirúrgicos Minimamente Invasivos , Imagens de Fantasmas
5.
IEEE Sens J ; 22(22): 22232-22243, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37216067

RESUMO

Flexible bevel-tipped needles are often used for needle insertion in minimally-invasive surgical techniques due to their ability to be steered in cluttered environments. Shapesensing enables physicians to determine the location of needles intra-operatively without requiring radiation of the patient, enabling accurate needle placement. In this paper, we validate a theoretical method for flexible needle shape-sensing that allows for complex curvatures, extending upon a previous sensor-based model. This model combines curvature measurements from fiber Bragg grating (FBG) sensors and the mechanics of an inextensible elastic rod to determine and predict the 3D needle shape during insertion. We evaluate the model's shape sensing capabilities in C- and S-shape insertions in single-layer isotropic tissue, and C-shape insertions in two-layer isotropic tissue. Experiments on a four-active area, FBG-sensorized needle were performed in varying tissue stiffnesses and insertion scenarios under stereo vision to provide the 3D ground truth needle shape. The results validate a viable 3D needle shape-sensing model accounting for complex curvatures in flexible needles with mean needle shape sensing root-mean-square errors of 0.160 ± 0.055 mm over 650 needle insertions.

6.
Proc IEEE Inst Electr Electron Eng ; 110(7): 893-908, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36588782

RESUMO

Intraocular surgery, one of the most challenging discipline of microsurgery, requires sensory and motor skills at the limits of human physiological capabilities combined with tremendously difficult requirements for accuracy and steadiness. Nowadays, robotics combined with advanced imaging has opened conspicuous and significant directions in advancing the field of intraocular microsurgery. Having patient treatment with greater safety and efficiency as the final goal, similar to other medical applications, robotics has a real potential to fundamentally change microsurgery by combining human strengths with computer and sensor-based technology in an information-driven environment. Still in its early stages, robotic assistance for intraocular microsurgery has been accepted with precaution in the operating room and successfully tested in a limited number of clinical trials. However, owing to its demonstrated capabilities including hand tremor reduction, haptic feedback, steadiness, enhanced dexterity, micrometer-scale accuracy, and others, microsurgery robotics has evolved as a very promising trend in advancing retinal surgery. This paper will analyze the advances in retinal robotic microsurgery, its current drawbacks and limitations, as well as the possible new directions to expand retinal microsurgery to techniques currently beyond human boundaries or infeasible without robotics.

7.
Rep U S ; 2022: 3505-3511, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36636257

RESUMO

Complex needle shape prediction remains an issue for planning of surgical interventions of flexible needles. In this paper, we validate a theoretical method for flexible needle shape prediction allowing for non-uniform curvatures, extending upon a previous sensor-based model which combines curvature measurements from fiber Bragg grating (FBG) sensors and the mechanics of an inextensible elastic rod to determine and predict the 3D needle shape during insertion. We evaluate the model's effectiveness in single-layer isotropic tissue for shape sensing and shape prediction capabilities. Experiments on a four-active area, FBG-sensorized needle were performed in varying single-layer isotropic tissues under stereo vision to provide 3D ground truth of the needle shape. The results validate a viable 3D needle shape prediction model accounting for non-uniform curvatures in flexible needles with mean needle shape sensing and prediction root-mean-square errors of 0.479 mm and 0.892 mm, respectively.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3301-3304, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891946

RESUMO

Femur fractures due to traumatic forces often require surgical intervention. Such surgeries require alignment of the femur in the presence of large muscular forces up to 500 N. Currently, orthopedic surgeons perform this alignment manually before fixation, leading to extra soft tissue damage and inaccurate alignment. One of the limitations of femoral fracture surgery is the limited vision and two-dimensional nature of X-ray images, which typically guide the surgeon in diagnosing the position of the femur. Other limitations include the lack of precise intraoperative planning and the process of trial-and-error alignment. To alleviate the issues discussed, we develop a marker-based approach for detecting the position of femur fragments using two X-ray images. The relative spatial position of the femur fragments plays a key role in guiding an innovative robotic system, named Robossis, for femur fracture alignment surgeries. Using the derived three-dimensional data, we simulate pre-programmed movements to visualize the proposed steps of the alignment method, while the bone fragments are attached to the robot. Ultimately, Robossis aims to improve the accuracy of femur alignment, which results in improved patient outcomes.


Assuntos
Fraturas do Fêmur , Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgia Assistida por Computador , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/cirurgia , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Humanos
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4836-4839, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892292

RESUMO

Functional medical imaging systems can provide insights into brain activity during various tasks, but most current imaging systems are bulky devices that are not compatible with many human movements. Our motivating application is to perform Positron Emission Tomography (PET) imaging of subjects during sitting, upright standing and locomotion studies on a treadmill. The proposed long-term solution is to construct a robotic system that can support an imaging system surrounding the subject's head, and then move the system to accommodate natural motion. This paper presents the first steps toward this approach, which are to analyze human head motion, determine initial design parameters for the robotic system, and verify the concept in simulation.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Encéfalo/diagnóstico por imagem , Humanos , Movimento (Física) , Tomografia por Emissão de Pósitrons
10.
Int Symp Med Robot ; 20212021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35187545

RESUMO

There has been much research exploring the use of fiber Bragg grating (FBG)-sensorized needles in the prostate biopsy procedure, but all FBG needles used in the research need to be calibrated, which is time consuming and prone to human errors. In this work, a semi-automatic robotic system was developed to perform FBG needle calibration. Compared to manual calibration results, the robotic system is able to calibrate FBG needles with the similar level of accuracy as achieved by an experienced manual operator, thus reducing the time cost during the needle calibration process.

11.
Proc IEEE Sens ; 20202020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34149973

RESUMO

Several models incorporate needle shape prediction, however prediction in multi-layer tissue for complex needle shape remains an issue. In this work, we present a method for trajectory generation of flexible needles that allows for complex curvatures, extending upon a previous sensor-based model. This model combines curvature measurements from fiber Bragg grating (FBG) sensors and the mechanics of an inextensible elastic rod for shape-sensing. We evaluate the method's effectiveness in single- and double-layer isotropic tissue prediction. The results illustrate a valid trajectory generation method accounting for complex curvatures in flexible needles.

12.
IEEE ASME Trans Mechatron ; 22(1): 465-475, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28989273

RESUMO

Dexterous continuum manipulators (DCMs) have been widely adopted for minimally- and less-invasive surgery. During the operation, these DCMs interact with surrounding anatomy actively or passively. The interaction force will inevitably affect the tip position and shape of DCMs, leading to potentially inaccurate control near critical anatomy. In this paper, we demonstrated a 2D mechanical model for a tendon actuated, notched DCM with compliant joints. The model predicted deformation of the DCM accurately in the presence of tendon force, friction force, and external force. A partition approach was proposed to describe the DCM as a series of interconnected rigid and flexible links. Beam mechanics, taking into consideration tendon interaction and external force on the tip and the body, was applied to obtain the deformation of each flexible link of the DCM. The model results were compared with experiments for free bending as well as bending in the presence of external forces acting at either the tip or body of the DCM. The overall mean error of tip position between model predictions and all of the experimental results was 0.62±0.41mm. The results suggest that the proposed model can effectively predict the shape of the DCM.

13.
IEEE Sens J ; 17(7): 1952-1963, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28652857

RESUMO

Magnetic Resonance Imaging (MRI) provides both anatomical imaging with excellent soft tissue contrast and functional MRI imaging (fMRI) of physiological parameters. The last two decades have witnessed the manifestation of increased interest in MRI-guided minimally invasive intervention procedures and fMRI for rehabilitation and neuroscience research. Accompanying the aspiration to utilize MRI to provide imaging feedback during interventions and brain activity for neuroscience study, there is an accumulated effort to utilize force sensors compatible with the MRI environment to meet the growing demand of these procedures, with the goal of enhanced interventional safety and accuracy, improved efficacy and rehabilitation outcome. This paper summarizes the fundamental principles, the state of the art development and challenges of fiber optic force sensors for MRI-guided interventions and rehabilitation. It provides an overview of MRI-compatible fiber optic force sensors based on different sensing principles, including light intensity modulation, wavelength modulation, and phase modulation. Extensive design prototypes are reviewed to illustrate the detailed implementation of these principles. Advantages and disadvantages of the sensor designs are compared and analyzed. A perspective on the future development of fiber optic sensors is also presented which may have additional broad clinical applications. Future surgical interventions or rehabilitation will rely on intelligent force sensors to provide situational awareness to augment or complement human perception in these procedures.

14.
Diagn Interv Radiol ; 23(3): 227-232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28420598

RESUMO

PURPOSE: The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. METHODS: A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. RESULTS: Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. CONCLUSION: 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.


Assuntos
Gadolínio DTPA/administração & dosagem , Injeções Espinhais/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Sistema Nervoso Simpático/anatomia & histologia , Idoso , Idoso de 80 Anos ou mais , Cadáver , Meios de Contraste , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Agulhas/estatística & dados numéricos , Estudos Prospectivos
15.
Radiat Res ; 186(6): 592-601, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27869556

RESUMO

In response to the limitations of computed tomography (CT) and cone-beam CT (CBCT) in irradiation guidance, especially for soft-tissue targets without the use of contrast agents, our group developed a solution that implemented bioluminescence tomography (BLT) as the image-guidance modality for preclinical radiation research. However, adding such a system to existing small animal irradiators is no small task. A potential solution is to utilize an off-line BLT system in close proximity to the irradiator, with stable and effective animal transport between the two systems. In this study, we investigated the localization accuracy of an off-line BLT system when used for the small animal radiation research platform (SARRP) and compared the results with those of an on-line system. The CBCT was equipped on both the off-line BLT system and the SARRP, with a distance of 5 m between them. To evaluate the setup error during animal transport between the two systems, the mice underwent CBCT imaging on the SARRP and were then transported to the off-line system for a second CBCT imaging session. The normalized intensity difference of the two images and the corresponding histogram and correlation were computed to evaluate if the transport process perturbed animal positioning. Strong correlation (correlation coefficients >0.95) between the SARRP and the off-line mouse CBCT was observed. The offset of the implanted light source center can be maintained within 0.2 mm during transport. To compare the target localization accuracy using the on-line SARRP BLT and the off-line system, a self-illuminated bioluminescent source was implanted in the abdomen of anesthetized mice. In addition to the application for dose calculation, CBCT imaging was also employed to generate the mesh grid of the imaged mouse for BLT reconstruction. Two scenarios were devised and compared, which involved localization of the luminescence source based on either: 1. on-line SARRP bioluminescence image and CBCT; or 2. off-line bioluminescence image and SARRP CBCT. The first scenario is assumed to have the least setup error, because no animal transport was involved. The second scenario examines if an off-line BLT system, with the mesh generated from the SARRP CBCT, can be used to guide SARRP irradiation when there is minimal target contrast in CBCT. Stability during animal transport between the two systems was maintained. The center of mass (CoM) of the light source reconstructed by the off-line BLT had an offset of 1.0 ± 0.4 mm from the true CoM derived from the SARRP CBCT. These results are comparable to the offset of 1.0 ± 0.2 mm using on-line BLT. With CBCT information provided by the SARRP and effective animal immobilization during transport, these findings support the utilization of an off-line BLT-guided system, in close proximity to the SARRP, for accurate soft-tissue target localization. In addition, a dedicated standalone BLT system for our partner site at the University of Pennsylvania was introduced in this study.


Assuntos
Luminescência , Radioterapia Guiada por Imagem/instrumentação , Tomografia/instrumentação , Animais , Camundongos , Imagens de Fantasmas
16.
Med Phys ; 43(5): 2619, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27147371

RESUMO

PURPOSE: To overcome the limitation of CT/cone-beam CT (CBCT) in guiding radiation for soft tissue targets, the authors developed a spectrally resolved bioluminescence tomography (BLT) system for the small animal radiation research platform. The authors systematically assessed the performance of the BLT system in terms of target localization and the ability to resolve two neighboring sources in simulations, tissue-mimicking phantom, and in vivo environments. METHODS: Multispectral measurements acquired in a single projection were used for the BLT reconstruction. The incomplete variables truncated conjugate gradient algorithm with an iterative permissible region shrinking strategy was employed as the optimization scheme to reconstruct source distributions. Simulation studies were conducted for single spherical sources with sizes from 0.5 to 3 mm radius at depth of 3-12 mm. The same configuration was also applied for the double source simulation with source separations varying from 3 to 9 mm. Experiments were performed in a standalone BLT/CBCT system. Two self-illuminated sources with 3 and 4.7 mm separations placed inside a tissue-mimicking phantom were chosen as the test cases. Live mice implanted with single-source at 6 and 9 mm depth, two sources at 3 and 5 mm separation at depth of 5 mm, or three sources in the abdomen were also used to illustrate the localization capability of the BLT system for multiple targets in vivo. RESULTS: For simulation study, approximate 1 mm accuracy can be achieved at localizing center of mass (CoM) for single-source and grouped CoM for double source cases. For the case of 1.5 mm radius source, a common tumor size used in preclinical study, their simulation shows that for all the source separations considered, except for the 3 mm separation at 9 and 12 mm depth, the two neighboring sources can be resolved at depths from 3 to 12 mm. Phantom experiments illustrated that 2D bioluminescence imaging failed to distinguish two sources, but BLT can provide 3D source localization with approximately 1 mm accuracy. The in vivo results are encouraging that 1 and 1.7 mm accuracy can be attained for the single-source case at 6 and 9 mm depth, respectively. For the 2 sources in vivo study, both sources can be distinguished at 3 and 5 mm separations, and approximately 1 mm localization accuracy can also be achieved. CONCLUSIONS: This study demonstrated that their multispectral BLT/CBCT system could be potentially applied to localize and resolve multiple sources at wide range of source sizes, depths, and separations. The average accuracy of localizing CoM for single-source and grouped CoM for double sources is approximately 1 mm except deep-seated target. The information provided in this study can be instructive to devise treatment margins for BLT-guided irradiation. These results also suggest that the 3D BLT system could guide radiation for the situation with multiple targets, such as metastatic tumor models.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/métodos , Medições Luminescentes/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Óptica/métodos , Abdome/diagnóstico por imagem , Animais , Simulação por Computador , Tomografia Computadorizada de Feixe Cônico/instrumentação , Imageamento Tridimensional/instrumentação , Medições Luminescentes/instrumentação , Camundongos , Imagens de Fantasmas , Radioterapia Guiada por Imagem/instrumentação , Tomografia Óptica/instrumentação
17.
Skeletal Radiol ; 45(5): 591-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26791162

RESUMO

OBJECTIVE: Perineural ganglion impar injections are used in the management of pelvic pain syndromes; however, there is no consensus regarding the optimal image guidance. Magnetic resonance imaging (MRI) provides high soft tissue contrast and the potential to directly visualize and target the ganglion. The purpose of this study was to assess the feasibility of MR-guided percutaneous perineural ganglion impar injections. MATERIALS AND METHODS: Six MR-guided ganglion impar injections were performed in six human cadavers. Procedures were performed with a clinical 1.5-Tesla MRI system through a far lateral transgluteus approach. Ganglion impar visibility, distance from the sacrococcygeal joint, number of intermittent MRI control steps required to place the needle, target error between the intended and final needle tip location, inadvertent punctures of non-targeted vulnerable structures, injectant distribution, and procedure time were determined. RESULTS: The ganglion impar was seen on MRI in 4/6 (66 %) of cases and located 0.8 mm cephalad to 16.3 mm caudad (average 1.2 mm caudad) to the midpoint of the sacrococcygeal joint. Needle placement required an average of three MRI control steps (range, 2-6). The average target error was 2.2 ± 2.1 mm. In 6/6 cases (100 %), there was appropriate periganglionic distribution and filling of the presacrococcygeal space. No punctures of non-targeted structures occurred. The median procedure time was 20 min (range, 12-29 min). CONCLUSION: Interventional MRI can visualize and directly target the ganglion impar for accurate needle placement and successful periganglionic injection with the additional benefit of no ionizing radiation exposure to patient and staff. Our results support clinical evaluation.


Assuntos
Bloqueio Nervoso Autônomo/métodos , Gânglios Simpáticos/diagnóstico por imagem , Imagem por Ressonância Magnética Intervencionista/métodos , Dor Pélvica/diagnóstico por imagem , Dor Pélvica/prevenção & controle , Idoso , Cadáver , Estudos de Viabilidade , Feminino , Humanos , Aumento da Imagem/métodos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Med Phys ; 42(4): 1710-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25832060

RESUMO

PURPOSE: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. METHODS: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. RESULTS: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3.0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. CONCLUSIONS: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.


Assuntos
Calibragem , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Óptica/métodos , Animais , Tomografia Computadorizada de Feixe Cônico/instrumentação , Desenho de Equipamento , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Camundongos , Imagens de Fantasmas , Tomografia Óptica/instrumentação
19.
J Biomed Opt ; 19(5): 057004, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24805810

RESUMO

Cochlear implantation offers the potential to restore sensitive hearing in patients with severe to profound deafness. However, surgical placement of the electrode array within the cochlea can produce trauma to sensorineural components, particularly if the initial turn of the cochlea is not successfully navigated as the array is advanced. In this work, we present a robot-mounted common-path swept-source optical coherence tomography endoscopic platform for three-dimensional (3-D) optical coherence tomography (OCT) registration and preoperative surgical planning for cochlear implant surgery. The platform is composed of a common-path 600-µm diameter fiber optic rotary probe attached to a five degrees of freedom robot capable of 1 µm precision movement. The system is tested on a dry fixed ex vivo human temporal bone, and we demonstrate the feasibility of a 3-D OCT registration of the cochlea to accurately describe the spatial and angular profiles of the canal formed by the scala tympani into the first cochlear turn.


Assuntos
Implante Coclear/métodos , Imageamento Tridimensional/métodos , Robótica/instrumentação , Tomografia de Coerência Óptica/métodos , Implante Coclear/instrumentação , Tecnologia de Fibra Óptica , Humanos , Imageamento Tridimensional/instrumentação , Osso Temporal/cirurgia , Tomografia de Coerência Óptica/instrumentação
20.
Cardiovasc Intervent Radiol ; 37(6): 1589-96, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24722894

RESUMO

PURPOSE: To evaluate the feasibility of magnetic resonance imaging (MRI)-guided vertebroplasty at 1.5 Tesla using augmented reality image overlay navigation. MATERIALS AND METHODS: Twenty-five unilateral vertebroplasties [5 of 25 (20%) thoracic, 20 of 25 (80%) lumbar] were prospectively planned in 5 human cadavers. A clinical 1.5-Teslan MRI system was used. An augmented reality image overlay navigation system and 3D Slicer visualization software were used for MRI display, planning, and needle navigation. Intermittent MRI was used to monitor placement of the MRI-compatible vertebroplasty needle. Cement injections (3 ml of polymethylmethacrylate) were performed outside the bore. The cement deposits were assessed on intermediate-weighted MR images. Outcome variables included type of vertebral body access, number of required intermittent MRI control steps, location of final needle tip position, cement deposit location, and vertebroplasty time. RESULTS: All planned procedures (25 of 25, 100%) were performed. Sixteen of 25 (64%) transpedicular and 9 of 25 (36%) parapedicular access routes were used. Six (range 3-9) MRI control steps were required for needle placement. No inadvertent punctures were visualized. Final needle tip position and cement location were adequate in all cases (25 of 25, 100%) with a target error of the final needle tip position of 6.1 ± 1.9 mm (range 0.3-8.7 mm) and a distance between the planned needle tip position and the center of the cement deposit of 4.3 mm (range 0.8-6.8 mm). Time requirement for one level was 16 (range 11-21) min. CONCLUSION: MRI-guided vertebroplasty using image overlay navigation is feasible allowing for accurate vertebral body access and cement deposition in cadaveric thoracic and lumbar vertebral bodies.


Assuntos
Imagem por Ressonância Magnética Intervencionista , Vertebroplastia/métodos , Idoso , Idoso de 80 Anos ou mais , Cimentos Ósseos , Cadáver , Feminino , Humanos , Imagem por Ressonância Magnética Intervencionista/métodos , Masculino , Polimetil Metacrilato , Estudos Prospectivos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA