Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499078

RESUMO

It is known that an altered redox balance interferes with normal spermatic functions. Exposure to genotoxic substances capable of producing oxidative stress (OS) can cause infertility in humans. The use of antioxidants to reduce oxidative stress contributes to the improvement in reproductive function. This study focused on an antigenotoxic evaluation of ellagic acid (EA) and ascorbic acid (AA) in combination against benzene genotoxic action on human spermatozoa in vitro. In addition to the evaluation of sperm parameters, damage in sperm genetic material and intracellular ROS quantification were assessed after AA, EA and benzene co-exposure using the TUNEL technique and DCF assay. The results showed that the combination of the two antioxidants generates a greater time-dependent antigenotoxic action, reducing both the sperm DNA fragmentation index and the oxidative stress. The genoprotective effect of AA and EA association in sperm cells lays the foundations for a more in-depth clinical study on the use of antioxidants as a therapy for male infertility.


Assuntos
Ácido Elágico , Infertilidade Masculina , Masculino , Humanos , Ácido Elágico/farmacologia , Ácido Elágico/metabolismo , Benzeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sêmen , Espermatozoides/metabolismo , Estresse Oxidativo , Infertilidade Masculina/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Dano ao DNA , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Motilidade dos Espermatozoides
2.
Toxics ; 10(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35324757

RESUMO

Environmental contamination by nanoparticles (NPs) and drugs represents one of the most debated issues of the last years. The aquatic biome and, indirectly, human health are strongly influenced by the negative effects induced by the widespread presence of pharmaceutical products in wastewater, mainly due to the massive use of antibiotics and inefficient treatment of the waters. The present study aimed to evaluate the harmful consequences due to exposure to antibiotics and NPs, alone and in combination, in the aquatic environment. By exploiting some of their peculiar characteristics, such as small size and ability to bind different types of substances, NPs can carry drugs into the body, showing potential genotoxic effects. The research was conducted on zebrafish (Danio rerio) exposed in vivo to lincomycin (100 mg/L) and titanium dioxide nanoparticles (TiO2 NPs) (10 µg/L) for 7 and 14 exposure days. The effects on zebrafish were evaluated in terms of cell viability, DNA fragmentation, and genomic template stability (GTS%) investigated using Trypan blue staining, TUNEL assay, and the random amplification of polymorphic DNA PCR (RAPD PCR) technique, respectively. Our results show that after TiO2 NPs exposure, as well as after TiO2 NPs and lincomycin co-exposure, the percentage of damaged DNA significantly increased and cell viability decreased. On the contrary, exposure to lincomycin alone caused only a GTS% reduction after 14 exposure days. Therefore, the results allow us to assert that genotoxic effect in target cells could be through a synergistic effect, also potentially mediated by the establishment of intermolecular interactions between lincomycin and TiO2 NPs.

3.
World J Mens Health ; 40(4): 636-652, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35118839

RESUMO

PURPOSE: This study provides a comprehensive analysis of research trends on the etiology, mechanisms, potential risk factors, diagnosis, prognosis, surgical and non-surgical treatment of varicocele, and clinical outcomes before and after varicocele repair. MATERIALS AND METHODS: Varicocele studies published between 1988 and 2020 were retrieved from the Scopus database on April 5, 2021. Original studies on human varicocele were included, irrespective of language. Retrieved articles were manually screened for inclusion in various sub-categories. Bibliometric data was subjected to scientometric analysis using descriptive statistics. Network, heat and geographic mapping were generated using relevant software. RESULTS: In total, 1,943 original human studies on varicocele were published. These were predominantly from the northern hemisphere and developed countries, and published in journals from the United States and Germany. Network map analysis for countries showed several interconnected nodal points, with the USA being the largest, and Agarwal A. from Cleveland Clinic, USA, being a center point of worldwide varicocele research collaborations. Studies of adolescents were underrepresented compared with studies of adults. Studies on diagnostic and prognostic aspects of varicocele were more numerous than studies on varicocele prevalence, mechanistic studies and studies focusing on etiological and risk factors. Varicocele surgery was more investigated than non-surgical approaches. To evaluate the impact of varicocele and its treatment, researchers mainly analyzed basic semen parameters, although markers of seminal oxidative stress are being increasingly investigated in the last decade, while reproductive outcomes such as live birth rate were under-reported in the literature. CONCLUSIONS: This study analyzes the publication trends in original research on human varicocele spanning over the last three decades. Our analysis emphasizes areas for further exploration to better understand varicocele's impact on men's health and male fertility.

4.
Environ Sci Pollut Res Int ; 29(41): 62208-62218, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34825339

RESUMO

The increased titanium dioxide nanoparticles (TiO2-NPs) spread and their interaction with organic and inorganic pollutants arouses concern for the potential hazards for organisms and environment. This study tested in vitro the genotoxic effects of TiO2-NPs (1 µg/mL) and cadmium (Cd) (0.1 µg/mL) co-exposure using Dicentrarchus labrax embryonic cells (DLEC) as experimental model. The genotoxicity tests (Comet assay, Diffusion Assay and Random Amplification of Polymorphic DNA (RAPD-PCR) were conducted after 3, 24 and 48 hours of exposure to TiO2-NPs and Cd alone and in combination. The results showed that the percentage of DNA damage and apoptotic cells increases following 48 hours TiO2-NPs exposure, while DNA instability was detected for all the times tested. Cd induced genotoxic effects starting from 3 hour-exposure and for all the treatment times. Cd + TiO2-NPs co-exposure did not cause any genomic damage or apoptosis for all the exposure times. The possibility that Cd and TiO2-NPs form aggregates no longer able of penetrating the nucleus and damaging the genetic material is discussed.


Assuntos
Bass , Nanopartículas Metálicas , Nanopartículas , Animais , Cádmio/toxicidade , DNA , Dano ao DNA , Genômica , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Técnica de Amplificação ao Acaso de DNA Polimórfico , Titânio/toxicidade
5.
Antioxidants (Basel) ; 10(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34356370

RESUMO

Oxidative imbalances in the gestational phase are responsible for certain complications during pregnancy and for foetal and neonatal genetic disorders. In this work, using human amniocytes, we aimed to evaluate the protection provided to foetal DNA by two concentrations of antioxidant molecules, α-lipoic acid (LA) and curcumin (Cur), against hydrogen peroxide (H2O2)-induced damage. Genotoxicity tests, performed by the random amplification of polymorphic DNA (RAPD-PCR) technique and TUNEL tests, showed that the lowest concentration of LA-protected cells and DNA from H2O2 insults. However, a greater ability to protect the amniocytes' DNA against H2O2 was observed following co-treatment with the highest concentration of Cur with H2O2. In fact, a genomic template stability (GTS%) similar to that of the negative control and a statistically significant reduction in the DNA fragmentation index (DFI) were revealed. Moreover, following a combined treatment with both antioxidants and H2O2, no statistical difference from controls was observed, in terms of both induced mutations and DNA breaks. Furthermore, no effect on morphology or cell viability was observed. The results demonstrate the ability of LA and Cur to protect the genetic material of amniocytes against genotoxic insults, suggesting their beneficial effects in pathologies related to oxidative stress.

6.
Reprod Sci ; 28(10): 2895-2905, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33861392

RESUMO

Cryopreservation causes decreased sperm fertility potential due to reactive oxygen species (ROS) production and physical-chemical damage, resulting in reduced sperm viability and motility. The addition of antioxidants to freezing media could protect sperm from cryo-damage, counteracting the harmful effects of ROS. The aim of this study was to assess the effects of curcumin supplementation in freezing medium on preventing cryo-damage in human semen. Semen samples collected from fertile men were cryopreserved in freezing medium supplemented with different concentrations of curcumin (2.5, 5, 10, and 20 µM). After freezing-thawing, sperm parameters, DNA fragmentation, intracellular ROS, and glutathione peroxidase 4 (GPX4) gene expression were evaluated. Supplementation with 20 µM curcumin in freezing medium caused increases in progressive and nonprogressive motility and significant reductions in intracellular ROS and DNA fragmentation in frozen-thawed sperm cells. Following cryopreservation, GPX4 mRNA expression was significantly upregulated in thawed semen supplemented with 20 µM curcumin compared to the control. The results showed that curcumin supplementation in freezing medium was protective against human sperm parameters and sperm DNA, counteracting oxidative damage induced by the freeze-thaw process.


Assuntos
Criopreservação/tendências , Curcumina/farmacologia , Citoproteção/efeitos dos fármacos , Preservação do Sêmen/tendências , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Adulto , Antioxidantes/farmacologia , Criopreservação/métodos , Citoproteção/fisiologia , Fragmentação do DNA/efeitos dos fármacos , Humanos , Masculino , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia
7.
World J Mens Health ; 39(4): 760-775, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33663027

RESUMO

PURPOSE: The objective of this scientometric analysis was to recognize the top 100 cited articles on 'Male infertility and Antioxidants' and analyze its publication characteristics. MATERIALS AND METHODS: The Scopus database was used to retrieve related articles and the top 100 identified based on citation rate. RESULTS: The articles were published in 56 journals between 1995 and 2019 with a median (interquartile range) citation score of 17 (5-62). Among the top 100 articles, 69 were clinical studies, which included controlled and blinded (33.33%), prospective (27.54%), randomized-controlled trials (26.09%), uncontrolled (11.59%), and retrospective (1.45%) studies. In addition to conventional semen parameters, advanced sperm function tests such as oxidative stress (51%) and sperm DNA damage (23%) were reported. Pregnancy rate (33%) was found to be the most reported reproductive outcome. Antioxidant therapy was mostly investigated in male cohorts with sperm abnormalities such as asthenozoospermia (28%) and clinical conditions such as idiopathic male infertility (20%), varicocele/varicocelectomy (17%) and general male infertility (16%). CONCLUSIONS: The most influential publications on antioxidants and male infertility were identified for the first time in the literature. This will serve as a reliable source of information for researchers and clinicians alike.

8.
Mol Reprod Dev ; 88(2): 167-174, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33522057

RESUMO

Oxidative stress (OS) plays a significant role in the etiology of male infertility, resulting in the impairment of male reproduction. This condition, characterized by an imbalance in the levels of oxidizing and antioxidant species in the seminal fluid, has a harmful impact on sperm functions and DNA integrity. The present study aimed to evaluate the anti-genotoxic action of ellagic acid, a polyphenolic molecule of natural origin having a powerful antigenotoxic, anti-inflammatory and antiproliferative role. An OS condition was induced in vitro by incubating normozoospermic human semen samples in benzene for 45, 60 and 90 min. DNA integrity was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay, RAPD-PCR was performed to calculate the genome template stability, while the percentage of intracellular reactive oxygen species (ROS) was assessed by the 2', 7'-dichlorofluorescein assay. Our results showed that ellagic acid has a consistent protective effect on DNA integrity, as well as on sperm vitality and motility, by counteracting generation of intracellular ROS. The results of this study suggest ellagic acid as a suitable molecule to protect sperm DNA from oxidative stress, with a potentially significant translational impact on the management of the male infertility.


Assuntos
Antimutagênicos/farmacologia , DNA/fisiologia , Ácido Elágico/farmacologia , Espermatozoides/efeitos dos fármacos , Adulto , Antioxidantes/farmacologia , Fragmentação do DNA , DNA Nucleotidilexotransferase/metabolismo , Instabilidade Genômica , Humanos , Masculino , Técnica de Amplificação ao Acaso de DNA Polimórfico , Motilidade dos Espermatozoides , Espermatozoides/fisiologia
9.
Cells ; 10(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546308

RESUMO

The aquatic environment is involved in the pollutants spreading mechanisms, including nanomaterials and heavy metals. The aims of this study were to assess the in vivo genotoxicity of Cd (1 mg/L) and to investigate the genomic effects generated by its co-exposure with TiO2-NPs (10 µg/L). The study was performed using zebrafish as a model for 5, 7, 14, 21, and 28 days of exposure. The genotoxic potential was assessed by three experimental approaches: DNA integrity, degree of apoptosis, and molecular alterations at the genomic level by genomic template stability (% GTS) calculation. Results showed an increased in DNA damage after Cd exposure with a decrease in % GTS. The co-exposure (TiO2-NPs + Cd) induced a no statistically significant loss of DNA integrity, a reduction of the apoptotic cell percentage and the recovery of genome stability for prolonged exposure days. Characterization and analytical determinations data showed Cd adsorption to TiO2-NPs, which reduced free TiO2-NPs levels. The results of our study suggest that TiO2-NPs could be used for the development of controlled heavy metal bioremediation systems.


Assuntos
Adsorção/fisiologia , Cádmio/metabolismo , Dano ao DNA/genética , Instabilidade Genômica/genética , Nanopartículas/metabolismo , Titânio/metabolismo , Animais , Peixe-Zebra
10.
Andrologia ; 53(2): e13738, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32706440

RESUMO

Sperm DNA integrity is important for normal functions such as fertilization, implantation, pregnancy and fetal development. Sperm DNA fragmentation (SDF) is more common in infertile men and may be responsible for poor reproductive function. Although there are a number of tests available to measure SDF, the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labelling TUNEL) assay using flow cytometry is becoming more popular to measure the sperm DNA fragmentation. It is a direct test that measures both single- and double- DNA strand breaks. In this review, we describe the protocol, quality control and measurement of sperm DNA fragmentation using a benchtop flow cytometer. We also briefly discuss the factors that can affect the results, challenges and clinical implications of TUNEL in assessing male infertility.


Assuntos
Infertilidade Masculina , Espermatozoides , Fragmentação do DNA , Feminino , Citometria de Fluxo , Humanos , Marcação In Situ das Extremidades Cortadas , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Masculino , Gravidez
11.
Andrologia ; 53(1): e13842, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33236365

RESUMO

Assisted reproductive technologies (ART) are considered as one of the primary management options to address severe male factor infertility. The purpose of this study was to identify the research trends in the field of male infertility and ART over the past 20 years (2000-2019) by analysing scientometric data (the number of publications per year, authors, author affiliations, journals, countries, type of documents, subject area and number of citations) retrieved using the Scopus database. We used VOS viewer software to generate a network map on international collaborations as well as a heat map of the top scientists in this field. Our results revealed a total of 2,148 publications during this period with Cleveland Clinic Foundation contributing the most (n = 69). The current scientometric analysis showed that the research trend on ART has been stable over the past two decades. Further in-depth analysis revealed that density gradient centrifugation (46%) and intracytoplasmic sperm injection (59.2%) are the most reported techniques for sperm separation and ART, respectively. Additionally, azoospermia was the most studied clinical scenario (60.6%), with majority of articles reporting pregnancy rate (47.25%) as the primary reproductive outcome for ART. This study provides insight into the current focus of research in the area of male infertility and ART as well as the areas that require further research in future.


Assuntos
Infertilidade Masculina , Técnicas de Reprodução Assistida , Feminino , Humanos , Infertilidade Masculina/terapia , Masculino , Gravidez , Taxa de Gravidez , Injeções de Esperma Intracitoplásmicas , Espermatozoides
12.
World J Mens Health ; 38(4): 412-471, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32777871

RESUMO

Sperm DNA integrity is crucial for fertilization and development of healthy offspring. The spermatozoon undergoes extensive molecular remodeling of its nucleus during later phases of spermatogenesis, which imparts compaction and protects the genetic content. Testicular (defective maturation and abortive apoptosis) and post-testicular (oxidative stress) mechanisms are implicated in the etiology of sperm DNA fragmentation (SDF), which affects both natural and assisted reproduction. Several clinical and environmental factors are known to negatively impact sperm DNA integrity. An increasing number of reports emphasizes the direct relationship between sperm DNA damage and male infertility. Currently, several assays are available to assess sperm DNA damage, however, routine assessment of SDF in clinical practice is not recommended by professional organizations. This article provides an overview of SDF types, origin and comparative analysis of various SDF assays while primarily focusing on the clinical indications of SDF testing. Importantly, we report four clinical cases where SDF testing had played a significant role in improving fertility outcome. In light of these clinical case reports and recent scientific evidence, this review provides expert recommendations on SDF testing and examines the advantages and drawbacks of the clinical utility of SDF testing using Strength-Weaknesses-Opportunities-Threats (SWOT) analysis.

13.
Nanomaterials (Basel) ; 10(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517002

RESUMO

The environmental release of titanium dioxide nanoparticles (TiO2NPs) associated with their intensive use has been reported to have a genotoxic effect on male fertility. TiO2NP is able to bind and transport environmental pollutants, such as cadmium (Cd), modifying their availability and/or toxicity. The aim of this work is to assess the in vitro effect of TiO2NPs and cadmium interaction in human sperm cells. Semen parameters, apoptotic cells, sperm DNA fragmentation, genomic stability and oxidative stress were investigated after sperm incubation in cadmium alone and in combination with TiO2NPs at different times (15, 30, 45 and 90 min). Our results showed that cadmium reduced sperm DNA integrity, and increased sperm DNA fragmentation and oxidative stress. The genotoxicity induced by TiO2NPs-cadmium co-exposure was lower compared to single cadmium exposure, suggesting an interaction of the substances to modulate their reactivity. The Quantitative Structure-Activity Relationship (QSAR) computational method showed that the interaction between TiO2NPs and cadmium leads to the formation of a sandwich-like structure, with cadmium in the middle, which results in the inhibition of its genotoxicity by TiO2NPs in human sperm cells.

14.
Free Radic Biol Med ; 156: 36-44, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32439384

RESUMO

Unraveling the role of reactive oxygen species and associated oxidative stress (OS) in male reproduction is one of the key areas of male reproductive research. This article illustrates the scientific landscape of OS in male reproductive research over the past several decades (1941-2018) using a scientometric approach. Scientometric data (articles per year, authors, affiliations, journals, and countries) on OS related to male reproduction were retrieved from the Scopus database and analyzed for each decade. Our analysis revealed an increasing trend in OS-based male reproductive research from 1941 to 2018 with a steep raise in publications and research collaborations starting from the period 1991-2000 (R2 = 0.81). Semen abnormalities and varicocele were the major areas investigated in relation to OS with the highest positive trend in publications from the time interval 1981-1990 to 2011-2018. Analysis of publications based on OS assessment techniques revealed chemiluminescence (n = 180) and evaluation of antioxidants (n = 300) as the most widely used direct and indirect tests, respectively. Furthermore, prognostic/diagnostic studies on OS evaluation increased significantly over the time. Our analysis highlights the evolution of OS in male reproductive research and its emergence as an important prognostic and diagnostic tool in the evaluation of male infertility.


Assuntos
Infertilidade Masculina , Estresse Oxidativo , Antioxidantes , Humanos , Masculino , Espécies Reativas de Oxigênio , Reprodução
15.
Ecotoxicol Environ Saf ; 197: 110642, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311610

RESUMO

During its development, embryo is easily susceptible to reactive oxygen species (ROS). Evidence demonstrate protective role of the antioxidants, improving both cellular growth and embryonic development. Among these, ellagic acid (EA) is a natural antioxidant with anti-inflammatory and anti-carcinogen properties. The aim of this work was to assess in vitro the protective and anti-genotoxic role of EA during Danio rerio (zebrafish) embryonic development. For the study, zebrafish embryos were treated with H2O2 (15 µM, 30 µM and 45 µM) to simulate an oxidative damage, and with EA (2.5 mM, 5 mM and 10 mM) for 8, 20, 24, 48, 96 hpf (hours post fertilization). Vitality rate, alterations in the morphology and behavior of the larvae and the genomic stability were analyzed. The exposure to H2O2 caused genotoxicity for all exposure times. The incubation in 45 µM H2O2 and 30 µM H2O2 resulted in increased mortality rate of the larvae, as well as 10 mM EA. The co-exposure was performed using to 15 µM H2O2 and 2.5 mM and 5 mM EA and it demonstrated the EA capacity to protect the embryo DNA and development from the oxidative insult. Particularly, the co-exposure to 15 mM H2O2 and 5 mM EA showed an increase in the embryo survival rate and absence of alterations in morphology and behavior at 96 hpf. Interestingly, we observed a higher genomic stability at 8h and 20h co-exposure (15 mM H2O2 and 5 mM EA) time. The decline observed in ROS concentration for both exposure times confirmed the observation. In conclusion, EA protects the zebrafish embryonic development from DNA oxidative damage increasing the embryo survival rate and improving morphological parameters of the larvae.


Assuntos
Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Ácido Elágico/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra , Animais , Embrião não Mamífero/anormalidades , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Peróxido de Hidrogênio/toxicidade , Larva/efeitos dos fármacos , Larva/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
16.
Free Radic Biol Med ; 152: 375-385, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32165282

RESUMO

Both oxidative stress (OS) and reductive stress (RS) are the two extreme facets of redox imbalance that can have deleterious effects on sperm function. However, there is a lack of information on the physiological range of oxidation-reduction potential (ORP). The aim of this study was to investigate the effect of OS and RS on functions and associated molecular changes in normal spermatozoa in order to establish the physiological range of ORP. In the current study, total and progressive motility remained unchanged in spermatozoa exposed to ORP values 0.33 and 0.72 mV/106 sperm/mL. However, a significant (P < 0.05) decline in total and progressive motility were observed at ORP values 1.48, 2.75, -11.24, -9.76 and -9.35 mV/106 sperm/mL. Sperm vitality also decreased significantly (P < 0.0001) at 2.75, -11.24 and -9.76 mV/106 sperm/mL. Spermatozoa exposed to ORP levels 2.75 and -11.24 mV/106 sperm/mL showed a significant (P < 0.01) decrease in mitochondrial membrane potential. Intracellular reactive oxygen species (iROS) production increased (P < 0.05) in spermatozoa exposed to ORP levels of 1.48 and 2.75 mV/106 sperm/mL, while iROS decreased (P < 0.05) at ORP levels -9.76 and -11.24 mV/106 sperm/mL. No significant change in sperm DNA fragmentation was noted in sperm exposed to OS/RS and the values were below the reference range (<19.25%). Western blot analysis revealed decreased expression of CV-ATPA, CIII-UQCRC2 and CIV-MTCO1 proteins at 60 and 120 min (P < 0.05) in both OS and RS conditions. This is the first study to report physiological range of ORP (between -9.76 and 1.48 mV/106 sperm/mL) and to elucidate the role of altered expression of oxidative phosphorylation (OXPHOS) complexes proteins in mediating detrimental effects of oxidative and reductive conditions on sperm functions. A decreased expression of OXPHOS proteins and associated mitochondrial dysfunction contributes to decreased sperm motility and vitality under oxidative and reductive stress.


Assuntos
Infertilidade Masculina , Sêmen , Humanos , Infertilidade Masculina/metabolismo , Masculino , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Análise do Sêmen , Motilidade dos Espermatozoides , Espermatozoides/metabolismo
17.
Reprod Biol Endocrinol ; 17(1): 110, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878936

RESUMO

BACKGROUND: This article describes the research trends in sperm DNA fragmentation (SDF) over the past 20 years (1999-2018) using a scientometric approach. METHODS: A stepwise approach was adopted to retrieve scientometric data (articles per year, authors, affiliations, journals, countries) from Scopus and analyze the publication pattern of SDF with reference to key areas of research in the field of Andrology. RESULTS: A total of 2121 articles were retrieved related to SDF. Our data revealed an increasing research trend in SDF (n = 33 to n = 173) over the past 20 years (R2 = 0.894). Most productive country in publications was the USA (n = 450), while Agarwal A. (n = 129) being the most productive author. Most of the articles in SDF were primarily focused on lifestyle (n = 157), asthenozoospermia (n = 135) and varicocele (130). Mechanistic studies on SDF were published twice as much as prognostic/diagnostic studies, with significant emphasis on oxidative stress. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was the most widely used technique to evaluate SDF. Publications on SDF related to assisted reproductive techniques also showed a linear increasing trend (R2 = 0.933). CONCLUSIONS: Our analysis revealed an increasing trend in SDF publications predominantly investigating lifestyle, asthenozoospermia and varicocele conditions with TUNEL being the most widely used technique. A substantial increase in research is warranted to establish SDF as prognostic/diagnostic parameter to evaluate clinical scenarios and ART outcomes.


Assuntos
Pesquisa Biomédica/tendências , Fragmentação do DNA , Infertilidade Masculina/genética , Espermatozoides/química , Astenozoospermia/genética , Dano ao DNA , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , National Institutes of Health (U.S.) , Editoração/tendências , Técnicas de Reprodução Assistida , Estados Unidos , Varicocele/genética
18.
Nanomaterials (Basel) ; 9(11)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652841

RESUMO

Titanium dioxide nanoparticles (NPs-TiO2 or TiO2-NPs) have been employed in many commercial products such as medicines, foods and cosmetics. TiO2-NPs are able to carry antibiotics to target cells enhancing the antimicrobial efficiency; so that these nanoparticles are generally used in antibiotic capsules, like lincomycin, added as a dye. Lincomycin is usually used to treat pregnancy bacterial vaginosis and its combination with TiO2-NPs arises questions on the potential effects on fetus health. This study investigated the potential impact of TiO2-NPs and lincomycin co-exposure on human amniocytes in vitro. Cytotoxicity was evaluated with trypan blue vitality test, while genotoxic damage was performed by Comet Test, Diffusion Assay and RAPD-PCR for 48 and 72 exposure hours. Lincomycin exposure produced no genotoxic effects on amniotic cells, instead, the TiO2-NPs exposure induced genotoxicity. TiO2-NPs and lincomycin co-exposure caused significant increase of DNA fragmentation, apoptosis and DNA damage in amniocytes starting from 48 exposure hours. These results contribute to monitor the use of TiO2-NPs combined with drugs in medical application. The potential impact of antibiotics with TiO2-NPs during pregnancy could be associated with adverse effects on embryo DNA. The use of nanomaterials in drugs formulation should be strictly controlled in order to minimize risks.

19.
Mol Reprod Dev ; 86(10): 1369-1377, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30803093

RESUMO

Titanium dioxide nanoparticles (TiO2 -NPs) are one of the most widely engineered nanoparticles used. The study has been focused on TiO 2 -NPs genotoxic effects on human spermatozoa in vitro. TiO 2 -NPs are able to cross the blood-testis barrier induced inflammation, cytotoxicity, and gene expression changes that lead to impairment of the male reproductive system. This study presents new data about DNA damage in human sperms exposed in vitro to two n-TiO 2 concentrations (1 µg/L and 10 µg/L) for different times and the putative role of reactive oxygen species (ROS) as mediators of n-TiO 2 genotoxicity. Primary n-TiO 2 characterization was performed by transmission electron microscopy. The dispersed state of the n-TiO 2 in media was spectrophotometrically determined at 0, 24, 48, and 72 hr from the initial exposure. The genotoxicity has been highlighted by different experimental approaches (comet assay, terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL] test, DCF assay, random amplification of polymorphic DNA polymerase chain reaction [RAPD-PCR]). The comet assay showed a statistically significant loss of sperm DNA integrity after 30 min of exposure. Increased threshold of sperm DNA fragmentation was highlighted after 30 min of exposure by the TUNEL Test. Also, the RAPD-PCR analysis showed a variation in the polymorphic profiles of the sperm DNA exposed to n-TiO 2 . The evidence from the DCF assay showed a statistically significant increase in intracellular ROS linked to n-TiO 2 exposure. This research provides the evaluation of n-TiO 2 potential genotoxicity on human sperm that probably occurs through the production of intracellular ROS.


Assuntos
Dano ao DNA/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Mutagênicos/toxicidade , Espermatozoides/efeitos dos fármacos , Titânio/toxicidade , Adulto , Instabilidade Genômica/efeitos dos fármacos , Humanos , Masculino , Nanopartículas Metálicas/química , Testes de Mutagenicidade , Mutagênicos/química , Estresse Oxidativo/efeitos dos fármacos , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA