Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NAR Cancer ; 5(4): zcad054, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38023731

RESUMO

N 6-Methyladenosine (m6A) RNA modifications dynamically regulate messenger RNA processing, differentiation and cell fate. Given these functions, we hypothesized that m6A modifications play a role in the transition to chemoresistance. To test this, we took an agnostic discovery approach anchored directly to chemoresistance rather than to any particular m6A effector protein. Specifically, we used methyl-RNA immunoprecipitation followed by sequencing (MeRIP-seq) in parallel with RNA sequencing to identify gene transcripts that were both differentially methylated and differentially expressed between cisplatin-sensitive and cisplatin-resistant bladder cancer (BC) cells. We filtered and prioritized these genes using clinical and functional database tools, and then validated several of the top candidates via targeted quantitative polymerase chain reaction (qPCR) and MeRIP-PCR. In cisplatin-resistant cells, SLC7A11 transcripts had decreased methylation associated with decreased m6A reader YTHDF3 binding, prolonged RNA stability, and increased RNA and protein levels, leading to reduced ferroptosis and increased survival. Consistent with this, cisplatin-sensitive BC cell lines and patient-derived organoids exposed to cisplatin for as little as 48 h exhibited similar mechanisms of SLC7A11 upregulation and chemoresistance, trends that were also reflected in public cancer survival databases. Collectively, these findings highlight epitranscriptomic plasticity as a mechanism of rapid chemoresistance and a potential therapeutic target.

2.
Sci Rep ; 12(1): 5518, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365706

RESUMO

Genetic mutations have long been recognized as drivers of cancer drug resistance, but recent work has defined additional non-genetic mechanisms of plasticity, wherein cancer cells assume a drug resistant phenotype marked by altered epigenetic and transcriptional states. Currently, little is known about the real-time, dynamic nature of this phenotypic shift. Using a bladder cancer model of nongenetic plasticity, we discovered that rapid transition to drug resistance entails upregulation of mitochondrial gene expression and a corresponding metabolic shift towards the tricarboxylic acid cycle and oxidative phosphorylation. Based on this distinction, we were able to track cancer cell metabolic profiles in real time using fluorescence lifetime microscopy (FLIM). We observed single cells transitioning spontaneously to an oxidative phosphorylation state over hours to days, a trend that intensified with exposure to cisplatin chemotherapy. Conversely, pharmacological inhibition of oxidative phosphorylation significantly reversed the FLIM metabolic signature and reduced cisplatin resistance. These rapid, spontaneous metabolic shifts offer a new means of tracking nongenetic cancer plasticity and forestalling the emergence of drug resistance.


Assuntos
Cisplatino , Neoplasias da Bexiga Urinária , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Células Epiteliais , Humanos , Fosforilação Oxidativa , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
3.
Cancers (Basel) ; 14(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406487

RESUMO

Chemotherapy resistance is traditionally attributed to DNA mutations that confer a survival advantage under drug selection pressure. However, in bladder cancer and other malignancies, we and others have previously reported that cancer cells can convert spontaneously to an aggressive drug-resistant phenotype without prior drug selection or mutational events. In the current work, we explored possible epigenetic mechanisms behind this phenotypic plasticity. Using Hoechst dye exclusion and flow cytometry, we isolated the aggressive drug-resistant cells and analyzed their chromatin accessibility at regulatory elements. Compared to the rest of the cancer cell population, the aggressive drug-resistant cells exhibited enhancer accessibility changes. In particular, we found that differentially accessible enhancers were enriched for the FOXC1 transcription factor motif, and that FOXC1 was the most significantly overexpressed gene in aggressive drug-resistant cells. ChIP-seq analysis revealed that differentially accessible enhancers in aggressive drug-resistant cells had a higher FOXC1 binding, which regulated the expression of adjacent cancer-relevant genes like ABCB1 and ID3. Accordingly, cisplatin treatment of bladder cancer cells led to an increased FOXC1 expression, which mediated cell survival and conversion to a drug-resistant phenotype. Collectively, these findings suggest that FOXC1 contributes to phenotypic plasticity by binding enhancers and promoting a mutation-independent shift towards cisplatin resistance in bladder cancer.

4.
J Nat Prod ; 83(10): 3111-3121, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32975953

RESUMO

Activating mutations in FLT3 receptor tyrosine kinase are found in a third of acute myeloid leukemia (AML) patients and are associated with disease relapse and a poor prognosis. The majority of these mutations are internal tandem duplications (ITDs) in the juxtamembrane domain of FLT3, which have been validated as a therapeutic target. The clinical success of selective inhibitors targeting oncogenic FLT3, however, has been limited due to the acquisition of drug resistance. Herein the identification of a dual FLT3/microtubule polymerization inhibitor, chalcone 4 (2'-allyloxy-4,4'-dimethoxychalcone), is reported through screening of 15 related chalcones for differential antiproliferative activity in leukemia cell lines dependent on FLT3-ITD (MV-4-11) or BCR-ABL (K562) oncogenes and by subsequent screening for mitotic inducers in the HCT116 cell line. Three natural chalcones (1-3) were found to be differentially more potent toward the MV-4-11 (FLT3-ITD) cell line compared to the K562 (BCR-ABL) cell line. Notably, the new semisynthetic chalcone 4, which is a 2'-O-allyl analogue of the natural chalcone 3, was found to be more potent toward the FLT3-ITD+ cell line and inhibited FLT3 signaling in FLT3-dependent cells. An in vitro kinase assay confirmed that chalcone 4 directly inhibited FLT3. Moreover, chalcone 4 induced mitotic arrest in these cells and inhibited tubulin polymerization in both cellular and biochemical assays. Treatment of MV-4-11 cells with this inhibitor for 24 and 48 h resulted in apoptotic cell death. Finally, chalcone 4 was able to overcome TKD mutation-mediated acquired resistance to FLT3 inhibitors in a MOLM-13 cell line expressing FLT3-ITD with the D835Y mutation. Chalcone 4 is, therefore, a promising lead for the discovery of dual-target FLT3 inhibitors.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Chalconas/farmacologia , Microtúbulos/metabolismo , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Antibióticos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Chalconas/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/farmacologia , Células HCT116 , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Polimerização , Tirosina Quinase 3 Semelhante a fms/genética
5.
Cell Cycle ; 18(18): 2281-2292, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31318643

RESUMO

Oral cancer is the most prevalent subtype of head and neck cancers and arises mainly from squamous cells of the oral cavity. Patients with advanced metastatic disease have poor overall survival resulting primarily from limited treatment options. Recent advances in the understanding of molecular basis of oral tumorigenesis provide an opportunity for identification and validation of new drug targets. The deregulated expression of the Aurora family of mitotic kinases, for example, has been associated with pathogenesis and poor prognosis in oral cancer. Here, we have evaluated the efficacy of the pan-Aurora inhibitor (CCT137690) alone and in combination with different chemotherapeutic and targeted drugs to identify its synergistic partners in oral cancer cell lines (ORL-48 and ORL-115). CCT137690 effectively inhibits Aurora kinases in both the cell lines and displays potent antiproliferative activity towards them. Prolonged treatment of these cells with CCT137690 results in abrogated mitotic spindle formation, misaligned chromosome attachment and polyploidy that ultimately leads to apoptotic cell death. We further identified that inhibitors of EGFR (gefitinib) and PI3-kinase (pictilisib) synergize with CCT137690 to inhibit the proliferation of the oral cancer cell lines. Moreover, we demonstrate that polyethylene glycol-based nanocapsules harboring combinations of CCT137690 with gefitinib or pictilisib inhibit the growth of oral cancer cell lines in 3D spheroid cultures and induce apoptosis that is comparable to free drug combinations. In conclusion, we have demonstrated the in vitro efficacy of CCT137690 in oral cancer cell lines, identified novel drug combinations with CCT137690 and synthesized nanocapsules containing these drug combinations for co-administration.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase B/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Gefitinibe/farmacologia , Imidazóis/farmacologia , Indazóis/farmacologia , Neoplasias Bucais/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Neoplasias Bucais/patologia , Nanocápsulas
6.
Bioorg Chem ; 87: 123-135, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884306

RESUMO

A series of forty α-substituted chalcones were synthesized and screened for their antiproliferative activities against HCT116 (colorectal) and HCC1954 (breast) cancer cell lines. Compounds 5a and 5e were found to be the most potent compounds with GI50 values of 0.63 µM and 0.725 µM in HCC1954 cell line and 0.69 µM and 1.59 µM in HCT116 cell line, respectively. Both compounds induced a G2/M cell cycle arrest and caused apoptotic cell death in HCT116 cells as shown by the induction of PARP cleavage. The compounds also stabilized p53 in a dose-dependent manner in HCT116 cells following 24-hour treatment. Furthermore, both 5a and 5e were able to overcome multidrug resistance in two MDR-1 overexpressing multidrug resistant cell lines.


Assuntos
Antineoplásicos/farmacologia , Chalconas/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Nanoscale Adv ; 1(8): 2924-2936, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36133618

RESUMO

Semi-conductor quantum dots (QDs) are favorite candidates for many applications especially for potential use as optical bioimaging agents. But the major issue of QDs is toxicity. In the present study, carbon nanodots were synthesized using a green hydrothermal approach from gelatin protein using a previously established protocol. However, the PL properties and applications of the as-synthesized CG (bovine gelatin) nanodots were remarkably different from those of previously reported gelatin carbon dots. CG (bovine gelatin) nanodots had sizes greater than the Bohr exciton radius but still had QD like fluorescence characteristics. Furthermore, the results from fluorescence spectroscopy demonstrated a tunable PL emission profile at various excitation wavelengths. Second, carbon nanodots were also synthesized from algal biomass of Pectinodesmus sp. via a green hydrothermal approach, denoted as CA (PHM3 algae) nanodots. A study of the PL properties and surface chemical composition of CG (bovine gelatin) and CA (PHM3 algae) nanodots suggested that the surface chemical composition significantly alters the surface states which directly influence their PL properties. CG (bovine gelatin) nanodots were used for imaging of plant and bacterial cells with good imaging sensitivity comparable to toxic semiconductor quantum dots. Moreover, the results from in vitro studies suggested good anticancer properties of CA (PHM3 algae) and CG (bovine gelatin) nanodots with minimum GI50 values of 0.316 ± 0.447 ng ml-1 (n = 2) and 8.156 ± 6.596 ng ml-1 (n = 2) for HCC 1954 (breast cancer) and 0.542 ± 0.715 ng ml-1 (n = 2) and 23.860 ± 14.524 ng ml-1 (n = 2) for HCT 116 (colorectal cancer) cell lines, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA