Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Health Sci (Qassim) ; 17(6): 28-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929238

RESUMO

Objectives: The poor prognosis of oral squamous cell carcinoma (OSCC) is vastly due to late diagnosis. The oral submucosal fibrosis (OSMF) is often unnoticed pathology linked with high risk of malignancy. Recently, we demonstrated that the clinicopathological alterations in OSMF and OSCC patients were correlated with cancer stem cell (CSCs) markers (CD133 and CD44). However, the parallel alterations of interleukin-1 beta (IL-1ß) with CSCs expression are largely unexplored. Thus, we aimed to investigate the relationship between IL-1ß alterations and CSC marker expression in both OSMF and OSCC situations. Materials and Methods: A total of 135 people have signed up for the study. There were sixty each in OSMF and OSCC groups, as well as 15 healthy controls. Levels of serum IL-1ß were examined by ELISA. Immunohistochemistry (IHC) was used to examine the expression of CD133 and CD44. For evaluating differential CSCs expression, IHC scoring (0-4) was utilized. Results: The IHC results showed maximum subjects in the OSMF and OSCC displaying CD44 and CD133 positivity, although the extent of expression in terms of IHC scoring found variable. CD133 and CD44-positive subjects showed increased levels of IL-1ß in the OSMF and OSCC group. Nevertheless, the enhancement of IL-1ß is more pronounced in the OSCC cases. Further, we observed a direct link of IL-1ß levels with IHC scoring. Multivariate regression analysis demonstrated a significant role for CD44 and CD133 positivity in the increase of IL-1ß levels. Conclusion: We concluded that concurrent simultaneous changes in CSC biomarkers and IL-1ß may help with early detection of OSMF and OSCC conditions.

2.
Front Plant Sci ; 13: 855559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574126

RESUMO

Exposure of plants to low temperatures adversely affects plant growth, development, and productivity. Plant response to cold stress is an intricate process that involves the orchestration of various physiological, signaling, biochemical, and molecular pathways. Calcium (Ca2+) signaling plays a crucial role in the acquisition of several stress responses, including cold. Upon perception of cold stress, Ca2+ channels and/or Ca2+ pumps are activated, which induces the Ca2+ signatures in plant cells. The Ca2+ signatures spatially and temporally act inside a plant cell and are eventually decoded by specific Ca2+ sensors. This series of events results in the molecular regulation of several transcription factors (TFs), leading to downstream gene expression and withdrawal of an appropriate response by the plant. In this context, calmodulin binding transcription activators (CAMTAs) constitute a group of TFs that regulate plant cold stress responses in a Ca2+ dependent manner. The present review provides a catalog of the recent progress made in comprehending the Ca2+ mediated cold acclimation in plants.

3.
Front Plant Sci ; 12: 741419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721467

RESUMO

Rice (Oryza sativa) is an imperative staple crop for nearly half of the world's population. Challenging environmental conditions encompassing abiotic and biotic stresses negatively impact the quality and yield of rice. To assure food supply for the unprecedented ever-growing world population, the improvement of rice as a crop is of utmost importance. In this era, "omics" techniques have been comprehensively utilized to decipher the regulatory mechanisms and cellular intricacies in rice. Advancements in omics technologies have provided a strong platform for the reliable exploration of genetic resources involved in rice trait development. Omics disciplines like genomics, transcriptomics, proteomics, and metabolomics have significantly contributed toward the achievement of desired improvements in rice under optimal and stressful environments. The present review recapitulates the basic and applied multi-omics technologies in providing new orchestration toward the improvement of rice desirable traits. The article also provides a catalog of current scenario of omics applications in comprehending this imperative crop in relation to yield enhancement and various environmental stresses. Further, the appropriate databases in the field of data science to analyze big data, and retrieve relevant information vis-à-vis rice trait improvement and stress management are described.

4.
BMC Genomics ; 22(1): 743, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649525

RESUMO

BACKGROUND: Fruit ripening is an intricate developmental process driven by a highly coordinated action of complex hormonal networks. Ethylene is considered as the main phytohormone that regulates the ripening of climacteric fruits. Concomitantly, several ethylene-responsive transcription factors (TFs) are pivotal components of the regulatory network underlying fruit ripening. Calmodulin-binding transcription activator (CAMTA) is one such ethylene-induced TF implicated in various stress and plant developmental processes. RESULTS: Our comprehensive analysis of the CAMTA gene family in Durio zibethinus (durian, Dz) identified 10 CAMTAs with conserved domains. Phylogenetic analysis of DzCAMTAs, positioned DzCAMTA3 with its tomato ortholog that has already been validated for its role in the fruit ripening process through ethylene-mediated signaling. Furthermore, the transcriptome-wide analysis revealed DzCAMTA3 and DzCAMTA8 as the highest expressing durian CAMTA genes. These two DzCAMTAs possessed a distinct ripening-associated expression pattern during post-harvest ripening in Monthong, a durian cultivar native to Thailand. The expression profiling of DzCAMTA3 and DzCAMTA8 under natural ripening conditions and ethylene-induced/delayed ripening conditions substantiated their roles as ethylene-induced transcriptional activators of ripening. Similarly, auxin-suppressed expression of DzCAMTA3 and DzCAMTA8 confirmed their responsiveness to exogenous auxin treatment in a time-dependent manner. Accordingly, we propose that DzCAMTA3 and DzCAMTA8 synergistically crosstalk with ethylene during durian fruit ripening. In contrast, DzCAMTA3 and DzCAMTA8 antagonistically with auxin could affect the post-harvest ripening process in durian. Furthermore, DzCAMTA3 and DzCAMTA8 interacting genes contain significant CAMTA recognition motifs and regulated several pivotal fruit-ripening-associated pathways. CONCLUSION: Taken together, the present study contributes to an in-depth understanding of the structure and probable function of CAMTA genes in the post-harvest ripening of durian.


Assuntos
Bombacaceae , Bombacaceae/metabolismo , Calmodulina/genética , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética
5.
Sci Rep ; 11(1): 13954, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230566

RESUMO

Nigella sativa L. (NS) is an herbaceous plant, possessing phytochemicals of therapeutic importance. Thymoquinone is one of the active phytochemicals of NS that confers noteworthy antioxidant properties. Sodium azide, an agent of abiotic stress, can modulates antioxidant system in plants. In the present investigation, sodium azide (0, 5 µM, 10 µM, 20 µM, 50 µM, 100 µM and 200 µM) doses administered to the in vitro NS callus cultures for production/modification of secondary metabolites with augmented activity. 200 µM sodium azide treated NS callus exhibited maximum peroxidase activity (1.286 ± 0.101 nanokatal mg-1 protein) and polyphenol oxidase activity (1.590 ± 0.110 nanokatal mg-1 protein), while 100 µM sodium azide treated NS callus for optimum catalase activity (1.250 ± 0.105 nanokatal mg-1 protein). Further, 200 µM sodium azide treated NS callus obtained significantly the highest phenolics (3.666 ± 0.475 mg g-1 callus fresh weight), 20 µM sodium azide treated NS callus, the highest flavonoids (1.308 ± 0.082 mg g-1 callus fresh weight) and 100 µM sodium azide treated NS callus, the highest carotenes (1.273 ± 0.066 mg g-1 callus fresh weight). However, NS callus exhibited a decrease in thymoquinone yield/content vis-à-vis possible emergence of its analog with 5.3 min retention time and an increase in antioxidant property. Treatment with 200 µM sodium azide registered significantly the lowest percent yield of callus extract (4.6 ± 0.36 mg g-1 callus fresh weight) and thymoquinone yield (16.65 ± 2.52 µg g-1 callus fresh weight) and content (0.36 ± 0.07 mg g-1 callus dry weight) and the highest antioxidant activity (3.873 ± 0.402%), signifying a negative correlation of the former with the latter. DNA damage inhibition (24.3 ± 1.7%) was recorded significantly maximum at 200 µM sodium azide treatment. Sodium azide treated callus also recorded emergence of a new peak at 5.3 min retention time (possibly an analog of thymoquinone with augmented antioxidant activity) whose area exhibits significantly negative correlation with callus extract yield and thymoquinone yield/content and positive correlation with antioxidant activity and in vitro DNA damage inhibition. Thus, sodium azide treatment to NS callus confers possible production of secondary metabolites or thymoquinone analog (s) responsible for elevated antioxidant property and inhibition to DNA damage. The formation of potent antioxidants through sodium azide treatment to NS could be worthy for nutraceutical and pharmaceutical industries.


Assuntos
Antioxidantes/metabolismo , Dano ao DNA , Nigella sativa/efeitos dos fármacos , Azida Sódica/farmacologia , Benzoquinonas/metabolismo , Catalase/metabolismo , Catecol Oxidase/metabolismo , DNA/metabolismo , Germinação/efeitos dos fármacos , Peroxidase/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Fatores de Tempo
6.
Front Plant Sci ; 12: 631810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763093

RESUMO

Plants are subjected to a plethora of environmental cues that cause extreme losses to crop productivity. Due to fluctuating environmental conditions, plants encounter difficulties in attaining full genetic potential for growth and reproduction. One such environmental condition is the recurrent attack on plants by herbivores and microbial pathogens. To surmount such attacks, plants have developed a complex array of defense mechanisms. The defense mechanism can be either preformed, where toxic secondary metabolites are stored; or can be inducible, where defense is activated upon detection of an attack. Plants sense biotic stress conditions, activate the regulatory or transcriptional machinery, and eventually generate an appropriate response. Plant defense against pathogen attack is well understood, but the interplay and impact of different signals to generate defense responses against biotic stress still remain elusive. The impact of light and dark signals on biotic stress response is one such area to comprehend. Light and dark alterations not only regulate defense mechanisms impacting plant development and biochemistry but also bestow resistance against invading pathogens. The interaction between plant defense and dark/light environment activates a signaling cascade. This signaling cascade acts as a connecting link between perception of biotic stress, dark/light environment, and generation of an appropriate physiological or biochemical response. The present review highlights molecular responses arising from dark/light fluctuations vis-à-vis elicitation of defense mechanisms in plants.

7.
Curr Mol Pharmacol ; 13(1): 7-16, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31333144

RESUMO

BACKGROUND: Chlorogenic acid (CGA) is a quinic acid conjugate of caffeic acid. It is an ester formed between caffeic acid and the 3-hydroxyl of L-quinic acid. This polyphenol is naturally present in substantial amount in the green coffee beans. Minor quantities of CGA are also reported in apples, eggplant, blueberries, tomatoes, strawberries and potatoes. CGA is reported to be beneficial in hypertension, hyperglycemia, antimicrobial, antitumor, memory enhancer, weight management etc. Further, it is also reported to have anticancer, antioxidant and anti-inflammatory activities. Since the last decade, CGA drew public attention for its widely recommended use as a medicine or natural food additive supplement for the management of obesity. OBJECTIVE: The current review explores the medicinal promises of CGA and emphasizes on its antiobese property as reported by various scientific reports and publication. CONCLUSION: CGA shows promises as an antioxidant, glycemic control agent, anti-hypertensive, antiinflammatory, antimicrobial, neuro-protective and anti-obesity agent. It primarily activates the AMPactivated protein kinase, inhibits 3-hydroxy 3-methylglutaryl coenzyme-A reductase and strengthens the activity of carnitine palmitoyltransferase to control the obesity.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Ácido Clorogênico/uso terapêutico , Obesidade/tratamento farmacológico , Adenilato Quinase/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fármacos Antiobesidade/farmacologia , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Carnitina O-Palmitoiltransferase/efeitos dos fármacos , Ácido Clorogênico/isolamento & purificação , Ácido Clorogênico/farmacologia , Café/química , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , PPAR alfa/agonistas
8.
Physiol Mol Biol Plants ; 24(6): 1209-1219, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30425435

RESUMO

The Nigella sativa pharmacological properties are mainly ascribed to its volatile oil, of which thymoquinone is an important bioactive component. Surprisingly, till date, no standard formulation or thymoquinone rich N. sativa extract is under clinical use probably due to its poor extraction and lesser stability in the already used solvents. In the present investigation solubility, extraction, percent composition and total antioxidant activity from the seeds of N. sativa was explored using five solvents. An HPLC method was standardized in an isocratic system (C-18 column, flow rate of 1.0 ml/min, mobile phase-water:methanol: 30:70, detection wavelength-254 nm, retention time-8.77 min) for quantification of thymoquinone. To further confirm the presence of thymoquinone in the respective extracts absorbance spectra analysis has been carried out and compared with pure thymoquinone. Additionally total antioxidant activity of Nigella sativa extracts has been evaluated using ascorbic acid as standard. Our results showed maximum percentage yield in aqueous extract while methanol having the least yield and the ethanol, benzene and hexane extracts exhibited moderate yields. A linear standard calibration curve of thymoquinone showed R2 as 0.999 and % RSD as 7.166. The HPLC analysis revealed maximum percentage composition of thymoquinone in the benzene extract, whereas in the hexane and methanol extracts the content was less. Aqueous and ethanol extracts displayed insignificant thymoquinone content. Absorbance spectra analysis confirms the presence of thymoquinone peak in the benzene, hexane and methanol extracts while aqueous and ethanol extracts showed minimal absorbance. Maximum total antioxidant activity was observed in the aqueous extract while minimum was observed in the methanolic extract. Weak positive (+ 0.3676) correlation was established between percent composition of thymoquinone and antioxidant activity among different extracts indicating that thymoquinone may not be the only factor for antioxidant activity, but other phytochemicals might also contribute. However, we for the first time demonstrated that the benzene extract of N. sativa has better solubility and percent composition of thymoquinone as compared to other solvents. It can be concluded that the solubility, differential composition of bioactive components among these extracts may have diverse effects on the total antiradical activity. Thus, our study provides insights on optimization and standardization of bioactive rich formulation of N. sativa.

9.
Int Microbiol ; 21(4): 197-205, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30810896

RESUMO

The study was done to isolate, identify, and characterize a good lipolytic strain from soil. Lipolytic strain isolation was done using tributyrin agar medium. The biochemical testing and 16S rRNA gene sequencing analysis was done for identification. The enzyme was purified using ammonium sulfate precipitation and column chromatography. Results have shown a novel high lipolytic strain of P. aeruginosa JCM5962(T), isolated from soil of sugarcane field. The 16S rRNA sequence analysis confirmed the strain as P. aeruginosa JCM5962(T); further, the sequence was submitted to Genbank (KX946966.1). The isolate produced an extracellular lipase which was purified as single band of 31 kDa. Maximum lipase activity was observed at 50 °C and pH 8.0. Activity was enhanced in the presence of cobalt and benzene solvent, whereas mercury, sodium dodecyl sulfate, and chloroform inhibited it. The enzyme's marked stability and activity at high temperature, alkaline pH and organic solvents suggest that this can be effectively used in a variety of applications in industries and as biotechnological tools.


Assuntos
Lipase/isolamento & purificação , Lipase/metabolismo , Pseudomonas aeruginosa/enzimologia , Técnicas de Tipagem Bacteriana , Precipitação Química , Cromatografia Líquida , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ativadores de Enzimas/análise , Inibidores Enzimáticos/análise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Lipase/química , Peso Molecular , Filogenia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , RNA Ribossômico 16S/genética , Saccharum/crescimento & desenvolvimento , Análise de Sequência de DNA , Microbiologia do Solo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA