Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0304335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959219

RESUMO

Inflammation is an immune system response that identifies and eliminates foreign material. However, excessive and persistent inflammation could disrupt the healing process. Plant-derived exosome-like nanoparticles (PDENs) are a promising candidate for therapeutic application because they are safe, biodegradable and biocompatible. In this study, papaya PDENs were isolated by a PEG6000-based method and characterized by dynamic light scattering (DLS), transmission Electron Microscopy (TEM), bicinchoninic acid (BCA) assay method, GC-MS analysis, total phenolic content (TPC) analysis, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. For the in vitro test, we conducted internalization analysis, toxicity assessment, determination of nitrite concentration, and assessed the expression of inflammatory cytokine genes using qRT-PCR in RAW 264.7 cells. For the in vivo test, inflammation was induced by caudal fin amputation followed by analysis of macrophage and neutrophil migration in zebrafish (Danio rerio) larvae. The result showed that papaya PDENs can be well isolated using the optimized differential centrifugation method with the addition of 30 ppm pectolyase, 15% PEG, and 0.2 M NaCl, which exhibited cup-shaped and spherical morphological structure with an average diameter of 168.8±9.62 nm. The papaya PDENs storage is stable in aquabidest and 25 mM trehalose solution at -20˚C until the fourth week. TPC estimation of all papaya PDENs ages did not show a significant change, while the DPPH test exhibited a significant change in the second week. The major compounds contained in Papaya PDENs is 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). Papaya PDENs can be internalized and is non-cytotoxic to RAW 264.7 cells. Moreover, LPS-induced RAW 264.7 cells treated with papaya PDENs showed a decrease in NO production and downregulation mRNA expression of pro-inflammatory cytokine genes (IL-1B and IL-6) and an upregulation in mRNA expression of anti-inflammatory cytokine gene (IL-10). In addition, in vivo tests conducted on zebrafish treated with PDENs papaya showed inhibition of macrophage and neutrophil cell migration. These findings suggest that PDENs papaya possesses anti-inflammatory properties.


Assuntos
Anti-Inflamatórios , Carica , Exossomos , Frutas , Nanopartículas , Peixe-Zebra , Carica/química , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Exossomos/metabolismo , Células RAW 264.7 , Nanopartículas/química , Frutas/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Citocinas/metabolismo
2.
Pharm Nanotechnol ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38243927

RESUMO

AIM: This research aimed to study the potential of PDEN from P. peruviana fruits (PENC) for regenerating and remodeling HDF. BACKGROUND: Large wounds are dangerous and require prompt and effective healing. Various efforts have been undertaken, but have been somewhat ineffective. Plant-derived exosome-like nanoparticles (PDEN) are easily sampled, relatively cost-effective, exhibit high yields, and are nonimmunogenic. OBJECTIVE: The objective of the study was to isolate and characterize PDEN from Physalis peruviana (PENC), and determine PENC's internalization and toxicity on HDF cells, PENC's ability to regenerate HDF (proliferation and migration), and PENC ability's to remodel HDF (collagen I and MMP- 1 production). METHOD: PENC was isolated using gradual filtration and centrifugation, followed by sedimentation using PEG6000. Characterization was done using a particle size analyzer, zeta potential analyzer, TEM, and BCA assay. Internalization was done using PKH67 staining. Toxicity and proliferation assays were conducted using MTT assay; meanwhile, migration assay was carried out by employing the scratch assay. Collagen I production was performed using immunocytochemistry and MMP-1 production was conducted using ELISA. RESULT: MTT assay showed a PENC concentration of 2.5 until 500 µg/mL and being non-toxic to cells. PENC has been found to induce cell proliferation in 1, 3, 5, and 7 days. PENC at a concentration of 2.5, 5, and 7.5 µg/mL, also accelerated HDF migration using the scratch assay in two days. In remodeling, PENC upregulated collagen-1 expression from day 7 to 14 compared to control. MMP-1 declined from day 2 to 7 in every PENC concentration and increased on day 14. Meanwhile, ROS declined from day 2 to 7 and 14, with PENC inducing a rise in the ROS level compared to control. Overall, PENC at concentrations of 2.5, 5, and 7.5 µg/mL induced HDF proliferation and migration, upregulated collagen I production, and decreased MMP-1 levels. CONCLUSION: Isolated PENC was 190-220 nm in size, circular, covered with membrane, and its zeta potential was -6.7 mV; it could also be stored at 4°C for up to 2 weeks in aqua bidest. Protein concentration ranged between 170-1,395 µg/mL. Using PKH67, PENC could enter HDF within 6 hours. PENC was non-toxic up to a concentration of 500 µg/mL. Using MTT and scratch assay, PENC was found to elevate HDF proliferation and migration, and reorganize actin. Using immunocytochemistry, collagen I was upregulated by PENC, whereas MMP-1 concentration was reduced.

3.
Data Brief ; 29: 105219, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32083156

RESUMO

We obtained data regarding the metabolites from flowers, the skin pulp, green beans and peaberry green beans of the robusta coffee plant (Coffea canephora). The beans were processed using a wet-hulled method. The volatile compounds from the flowers were extracted using a solid-phase microextraction. Secondary metabolites from the skin pulp, green beans, and peaberry green beans were extracted by a maceration method using methanol as a solvent. The separation and identification of metabolites were conducted using gas chromatography-mass spectrometry. The flower's volatile compounds were identified by matching the generated spectra with the NIST14 library as a reference, whereas the metabolites in the skin pulp, green beans, and peaberry green beans were identified using the WILLEY09TH library as a reference. The identified volatile compounds in flowers have been listed in Table 1, and the identified skin pulp, green bean, and peaberry green bean metabolite compounds have been listed in Table 2.

4.
Data Brief ; 26: 104418, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31508471

RESUMO

This data informs about the profile of volatile compound of coffee flower (Coffee arabica) from different locations with different annual rainfall by using gas chromatography - mass spectrometry (GC-MS). The volatile compounds were captured by solid phase micro extraction (SPME) methods. The extract then subjected to GC-MS for separation and identification of compounds. The profile of volatile compound was provided in, Table 1, Table 2, Table 3 and Table 4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA