Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RNA ; 29(12): 1856-1869, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37648453

RESUMO

The mammalian tRNA ligase complex (tRNA-LC) catalyzes the splicing of intron-containing pre-tRNAs in the nucleus and the splicing of XBP1 mRNA during the unfolded protein response (UPR) in the cytoplasm. We recently reported that the tRNA-LC coevolved with PYROXD1, an essential oxidoreductase that protects the catalytic cysteine of RTCB, the catalytic subunit of the tRNA-LC, against aerobic oxidation. In this study, we show that the oxidoreductase Thioredoxin (TRX) preserves the enzymatic activity of RTCB under otherwise inhibiting concentrations of oxidants. TRX physically interacts with oxidized RTCB, and reduces and reactivates RTCB through the action of its redox-active cysteine pair. We further show that TRX interacts with RTCB at late stages of UPR. Since the interaction requires oxidative conditions, our findings suggest that prolonged UPR generates reactive oxygen species. Thus, our results support a functional role for TRX in securing and repairing the active site of the tRNA-LC, thereby allowing pre-tRNA splicing and UPR to occur when cells encounter mild, but still inhibitory levels of reactive oxygen species.


Assuntos
Cisteína , RNA Ligase (ATP) , Animais , Humanos , RNA Ligase (ATP)/genética , Cisteína/metabolismo , Espécies Reativas de Oxigênio , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Precursores de RNA/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Oxirredutases , Oxirredução , Mamíferos/genética
2.
Free Radic Biol Med ; 160: 513-525, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32877736

RESUMO

Disulfide bonds are a key determinant of protein structure and function, and highly conserved across proteomes. They are particularly abundant in extracellular proteins, including those with critical structural, ligand binding or receptor function. We demonstrate that oxidation of protein disulfides induces polymerization, and results in oxygen incorporation into the former disulfide via thiosulfinate generation. These intermediates, which have half-lives of several hours in vitro, undergo secondary reactions that cleave the disulfide bond, by irreversible hydrolysis to sulfinic and sulfonic acids, or reaction with thiols in a process that yields thiolated proteins (e.g. glutathionylated species in the case of reaction with glutathione). The adducts have been characterized by mass spectrometry (as ions corresponding to the addition of 306 and 712 Da for addition of one and two glutathione molecules, respectively) and immunoblotting. These modifications can be induced by multiple biologically-important oxidants, including HOCl, ONOOH, and H2O2, and on multiple proteins, demonstrating that this is a common disulfide modification pathway. Addition of glutathione to give glutathionylated proteins, can be reversed by reducing systems (e.g. tris(2-carboxyethyl)phosphine), but this does not repair the original disulfide bond. Exposure of human plasma to these modifying agents increases protein glutathionylation, demonstrating potential in vivo relevance. Overall these data provide evidence for a novel and facile route to glutathionylated proteins involving initial oxidation of a disulfide to a thiosulfinate followed by rapid reaction with GSH ('oxidant-mediated thiol-disulfide exchange'). These data elucidate a novel pathway for protein glutathionylation that may have significant implications for redox biology and cell signaling.


Assuntos
Peróxido de Hidrogênio , Oxidantes , Dissulfetos , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Oxirredução , Compostos de Sulfidrila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA