Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Reprod Fertil ; 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36346793

RESUMO

Polycystic ovary syndrome (PCOS) is an endocrine metabolic disorder that appears to have a genetic predisposition and a fetal origin. The fetal ovary has two major somatic cell types shown previously to be of different cellular origins, different morphologies and to differentially express 15 genes. We isolated the somatic gonadal ridge epithelial-like (GREL) cells (n = 7) and ovarian fetal fibroblasts (n = 6) by clonal expansion. Using qRT-PCR, we compared the gene expression levels of PCOS candidate genes with previous data on the expression levels in whole fetal ovaries across gestation. We also compared these levels with those in bovine adult ovarian cells including fibroblasts (n = 4), granulosa cells (n = 5) and surface epithelial cells (n = 5). Adult cell types exhibited clear differences in the expression of most genes. In fetal ovarian cells, DENND1A and ERBB3 had significantly higher expression in GREL cells. HMGA2 and TGFB1I1 tended to have higher expression in fetal fibroblasts than GREL cells. Another 19 genes did not exhibit differences between GREL cells and fetal fibroblasts and FBN3, FSHB, LHCGR, FSHR and ZBTB16 were very lowly expressed in GREL cells and fibroblasts. The culture of fetal fibroblasts in EGF-containing medium resulted in lower expression of NEIL2, but higher expression of MAPRE1 compared to culture in the absence of EGF. Thus, the two fetal ovarian somatic cell types mostly lacked differential expression of PCOS candidate genes.

2.
PLoS One ; 17(7): e0268467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802560

RESUMO

During ovarian development, gonadal ridge epithelial-like (GREL) cells arise from the epithelial cells of the ventral surface of the mesonephros. They ultimately develop into follicular granulosa cells or into ovarian surface epithelial cells. Stromal fibroblasts arise from the mesonephros and penetrate the ovary. We developed methods for isolating and culturing fetal ovarian GREL cells and ovarian fibroblasts by expansion of colonies without passage. In culture, these two cell types were morphologically different. We examined the expression profile of 34 genes by qRT-PCR, of which 24 genes had previously been studied in whole fetal ovaries. Expression of nine of the 10 newly-examined genes in fetal ovaries correlated with gestational age (MUC1, PKP2, CCNE1 and CCNE2 negatively; STAR, COL4A1, GJA1, LAMB2 and HSD17B1 positively). Comparison between GREL cells and fetal fibroblasts revealed higher expression of KRT19, PKP2, OCLN, MUC1, ESR1 and LGR5 and lower expression of GJA1, FOXL2, NR2F2, FBN1, COL1A1, NR5A1, CCND2, CCNE1 and ALDH1A1. Expression of CCND2, CCNE1, CCNE2, ESR2 and TGFBR1 was higher in the fetal fibroblasts than in adult fibroblasts; FBN1 was lower. Expression of OCLN, MUC1, LAMB2, NR5A1, ESR1, ESR2, and TGFBR3 was lower in GREL cells than ovarian surface epithelial cells. Expression of KRT19, DSG2, PKP2, OCLN, MUC1, FBN1, COL1A1, COL3A1, STAR and TGFBR2 was higher and GJA1, CTNNB1, LAMB2, NR5A1, CYP11A1, HSD3B1, CYP19A1, HSD17B1, FOXL2, ESR1, ESR2, TGFBR3 and CCND2 was lower in GREL cells compared to granulosa cells. TGFß1 altered the expression of COL1A1, COL3A1 and FBN1 in fetal fibroblasts and epidermal growth factor altered the expression of FBN1 and COL1A1. In summary, the two major somatic cell types of the developing ovary have distinct gene expression profiles. They, especially GREL cells, also differ from the cells they ultimately differentiate in to. The regulation of cell fate determination, particularly of the bi-potential GREL cells, remains to be elucidated.


Assuntos
Células da Granulosa , Mesonefro , Animais , Bovinos , Células Epiteliais , Feminino , Fibroblastos/metabolismo , Células da Granulosa/metabolismo , Ovário/metabolismo
3.
Hum Reprod ; 37(6): 1244-1254, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35413103

RESUMO

STUDY QUESTION: Could changes in transforming growth factor ß (TGFß) signalling during foetal ovary development alter the expression of polycystic ovary syndrome (PCOS) candidate genes leading to a predisposition to PCOS? SUMMARY ANSWER: TGFß signalling molecules are dynamically expressed during foetal ovary development and TGFß1 inhibits expression of the androgen receptor (AR) and 7 (INSR, C8H9orf3, RAD50, ERBB3, NEIL2, IRF1 and ZBTB16) of the 25 PCOS candidate genes in foetal ovarian fibroblasts in vitro, whilst increasing expression of the AR cofactor TGFß-induced transcript 1 (TGFB1I1 or Hic5). WHAT IS KNOWN ALREADY: The ovarian stroma arises from the mesonephros during foetal ovary development. Changes in the morphology of the ovarian stroma are cardinal features of PCOS. The ovary is more fibrous and has more tunica and cortical and subcortical stroma. It is not known why this is and when this arises. PCOS has a foetal origin and perhaps ovarian stroma development is altered during foetal life to determine the formation of a polycystic ovary later in life. PCOS also has a genetic origin with 19 loci containing 25 PCOS candidate genes. In many adult tissues, TGFß is known to stimulate fibroblast replication and collagen deposition in stroma, though it has the opposite effect in the non-scaring foetal tissues. Our previous studies showed that TGFß signalling molecules [TGFßs and their receptors, latent TGFß binding proteins (LTBPs) and fibrillins, which are extracellular matrix proteins that bind LTBPs] are expressed in foetal ovaries. Also, we previously showed that TGFß1 inhibited expression of AR and 3 PCOS candidate genes (INSR, C8H9orf3 and RAD50) and stimulated expression of TGFB1I1 in cultured foetal ovarian fibroblasts. STUDY DESIGN, SIZE, DURATION: We used Bos taurus for this study as we can ethically collect foetal ovaries from across the full 9-month gestational period. Foetal ovaries (62-276 days, n = 19) from across gestation were collected from pregnant B. taurus cows for RNA-sequencing (RNA-seq) analyses. Foetal ovaries from B. taurus cows were collected (160-198 days, n = 6) for culture of ovarian fibroblasts. PARTICIPANTS/MATERIALS, SETTING, METHODS: RNA-seq transcriptome profiling was performed on foetal ovaries and the data on genes involved in TGFß signalling were extracted. Cells were dispersed from foetal ovaries and fibroblasts cultured and treated with TGFß1. The effects of TGFß regulation on the remaining eight PCOS candidate genes not previously studied (ERBB3, MAPRE1, FDFT1, NEIL2, ARL14EP, PLGRKT, IRF1 and ZBTB16) were examined. MAIN RESULTS AND THE ROLE OF CHANCE: Many TGFß signalling molecules are expressed in the foetal ovary, and for most, their expression levels increased accross gestation (LTBP1/2/3/4, FBN1, TGFB2/3, TGFBR2/3 and TGFB1I1), while a few decreased (FBN3, TGFBR3L, TGFBI and TGFB1) and others remained relatively constant (TGFBRAP1, TGFBR1 and FBN2). TGFß1 significantly decreased expression of PCOS candidate genes ERBB3, NEIL2, IRF1 and ZBTB16 in cultured foetal ovarian fibroblasts. LARGE SCALE DATA: The FASTQ files, normalized data and experimental information have been deposited in the Gene Expression Omnibus (GEO) accessible by accession number GSE178450. LIMITATIONS, REASONS FOR CAUTION: Regulation of PCOS candidate genes by TGFß was carried out in vitro and further studies in vivo are required. This study was carried out in bovine where foetal ovaries from across all of the 9-month gestational period were available, unlike in the human where it is not ethically possible to obtain ovaries from the second half of gestation. WIDER IMPLICATIONS OF THE FINDINGS: From our current and previous results we speculate that inhibition of TGFß signalling in the foetal ovary is likely to (i) increase androgen sensitivity by enhancing expression of AR, (ii) increase stromal activity by stimulating expression of COL1A1 and COL3A1 and (iii) increase the expression of 7 of the 25 PCOS candidate genes. Thus inhibition of TGFß signalling could be part of the aetiology of PCOS or at least the aetiology of polycystic ovaries. STUDY FUNDING/COMPETING INTEREST(S): Funding was received from Adelaide University China Fee Scholarship (M.L.), Australian Research Training Program (R.A.) and the Faculty of Health and Medical Science Divisional Scholarship (R.A.), Adelaide Graduate Research Scholarships (R.A. and N.A.B.), Australia Awards Scholarship (M.D.H.), Robinson Research Institute Career Development Fellowship (K.H.) and Building On Ideas Grant (K.H.), National Health and Medical Research Council of Australia Centre for Research Excellence in the Evaluation, Management and Health Care Needs of Polycystic Ovary Syndrome (N.A.B., M.D.H. and R.J.R.; GTN1078444) and the Centre for Research Excellence on Women's Health in Reproductive life (R.A., R.J.R. and K.H.; GTN1171592) and the UK Medical Research Council (R.A.A.; grant no. G1100357). The funders did not play any role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors of this manuscript have nothing to declare and no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.


Assuntos
Síndrome do Ovário Policístico , Animais , Austrália , Bovinos , Feminino , Feto , Humanos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Gravidez , Fator de Crescimento Transformador beta
4.
Biol Reprod ; 103(4): 840-853, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32678441

RESUMO

Polycystic ovary syndrome (PCOS) appears to have a genetic predisposition and a fetal origin. We compared the expression levels of 25 PCOS candidate genes from adult control and PCOS human ovaries (n = 16) using microarrays. Only one gene was potentially statistically different. Using qRT-PCR, expression of PCOS candidate genes was examined in bovine fetal ovaries from early stages when they first developed stroma through to completion of development (n = 27; 60-270 days of gestation). The levels of ERBB3 mRNA negatively correlated with gestational age but positively with HMGA2, FBN3, TOX3, GATA4, and DENND1A.X1,2,3,4, previously identified as correlated with each other and expressed early. PLGRKT and ZBTB16, and less so IRF1, were also correlated with AMH, FSHR, AR, INSR, and TGFB1I1, previously identified as correlated with each other and expressed late. ARL14EP, FDFT1, NEIL2, and MAPRE1 were expressed across gestation and not correlated with gestational age as shown previously for THADA, ERBB4, RAD50, C8H9orf3, YAP1, RAB5B, SUOX, and KRR1. LHCGR, because of its unusual bimodal expression pattern, had some unusual correlations with other genes. In human ovaries (n = 15; <150 days of gestation), ERBB3.V1 and ERBB3.VS were expressed and correlated negatively with gestational age and positively with FBN3, HMGA2, DENND1A.V1,3,4, DENND1A.V1-7, GATA4, and FSHR, previously identified as correlated with each other and expressed early. Thus, the general lack of differential expression of candidate genes in adult ovaries contrasting with dynamic patterns of gene expression in fetal ovaries is consistent with a vulnerability to disturbance in the fetal ovary that may underpin development of PCOS.


Assuntos
Feto/metabolismo , Ovário/metabolismo , Síndrome do Ovário Policístico/metabolismo , Animais , Bovinos , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Análise Serial de Proteínas
5.
PLoS One ; 15(2): e0229351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32078641

RESUMO

Polycystic ovary syndrome (PCOS) affects around 10% of young women, with adverse consequences on fertility and cardiometabolic outcomes. PCOS appears to result from a genetic predisposition interacting with developmental events during fetal or perinatal life. We hypothesised that PCOS candidate genes might be expressed in the fetal ovary when the stroma develops; mechanistically linking the genetics, fetal origins and adult ovarian phenotype of PCOS. In bovine fetal ovaries (n = 37) of 18 PCOS candidate genes only SUMO1P1 was not expressed. Three patterns of expression were observed: early gestation (FBN3, GATA4, HMGA2, TOX3, DENND1A, LHCGR and FSHB), late gestation (INSR, FSHR, and LHCGR) and throughout gestation (THADA, ERBB4, RAD50, C8H9orf3, YAP1, RAB5B, SUOX and KRR1). A splice variant of FSHB exon 3 was also detected early in the bovine ovaries, but exon 2 was not detected. Three other genes, likely to be related to the PCOS aetiology (AMH, AR and TGFB1I1), were also expressed late in gestation. Significantly within each of the three gene groups, the mRNA levels of many genes were highly correlated with each other, despite, in some instances, being expressed in different cell types. TGFß is a well-known stimulator of stromal cell replication and collagen synthesis and TGFß treatment of cultured fetal ovarian stromal cells inhibited the expression of INSR, AR, C8H9orf3 and RAD50 and stimulated the expression of TGFB1I1. In human ovaries (n = 15, < 150 days gestation) many of the same genes as in bovine (FBN3, GATA4, HMGA2, FSHR, DENND1A and LHCGR but not TOX3 or FSHB) were expressed and correlated with each other. With so many relationships between PCOS candidate genes during development of the fetal ovary, including TGFß and androgen signalling, we suggest that future studies should determine if perturbations of these genes in the fetal ovary can lead to PCOS in later life.


Assuntos
Biomarcadores/análise , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Ovário/patologia , Síndrome do Ovário Policístico/patologia , Polimorfismo de Nucleotídeo Único , Adulto , Animais , Bovinos , Feminino , Genes Reguladores , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Ovário/metabolismo , Síndrome do Ovário Policístico/genética , Gravidez , Células Estromais/metabolismo , Células Estromais/patologia
6.
J Histochem Cytochem ; 68(2): 113-126, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31855103

RESUMO

When first formed, the ovary only has an established epithelium at its base or hilum. Later, an epithelium is established around the rest of the ovary. To examine this further, we conducted scanning electron microscopy of the surface of bovine fetal ovaries and immunohistochemistry of ovarian cross-sections. From the earliest time point, the cells on the surface of the base or hilum of the ovary were cuboidal. On the remainder of the ovary, the surface was more irregular. By mid-development, the surface was covered completely with either a stratified or simple epithelium of cuboidal cells. Clefts were observed in the surface and appeared to form due to the expansion of stroma surrounding each open ovigerous cord, elevating the areas surrounding each cord, while leaving the opening of the cord to form the base of each cleft. The continued expansion of the surrounding stroma below the surface appeared not only to close the ovigerous cords from the surface but to compress the clefts into the shape of a groove. Later, most of the ovarian surface was covered with a simple cuboidal epithelium. The changes to the ovarian surface during fetal development coincide with the remodeling of the stroma and cords below.


Assuntos
Epitélio/metabolismo , Desenvolvimento Fetal , Ovário/citologia , Animais , Bovinos , Feminino , Imuno-Histoquímica , Ovário/metabolismo
7.
Reproduction ; 157(6): 545-565, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30925461

RESUMO

The ovary has specialised stromal compartments, including the tunica albuginea, interstitial stroma and theca interna, which develops concurrently with the follicular antrum. To characterise the molecular determinants of these compartments, stroma adjacent to preantral follicles (pre-theca), interstitium and tunica albuginea were laser microdissected (n = 4 per group) and theca interna was dissected from bovine antral follicles (n = 6). RNA microarray analysis showed minimal differences between interstitial stroma and pre-theca, and these were combined for some analyses and referred to as stroma. Genes significantly upregulated in theca interna compared to stroma included INSL3, LHCGR, HSD3B1, CYP17A1, ALDH1A1, OGN, POSTN and ASPN. Quantitative RT-PCR showed significantly greater expression of OGN and LGALS1 in interstitial stroma and theca interna versus tunica and greater expression of ACD in tunica compared to theca interna. PLN was significantly higher in interstitial stroma compared to tunica and theca. Ingenuity pathway, network and upstream regulator analyses were undertaken. Cell survival was also upregulated in theca interna. The tunica albuginea was associated with GPCR and cAMP signalling, suggesting tunica contractility. It was also associated with TGF-ß signalling and increased fibrous matrix. Western immunoblotting was positive for OGN, LGALS1, ALDH1A1, ACD and PLN with PLN and OGN highly expressed in tunica and interstitial stroma (each n = 6), but not in theca interna from antral follicles (n = 24). Immunohistochemistry localised LGALS1 and POSTN to extracellular matrix and PLN to smooth muscle cells. These results have identified novel differences between the ovarian stromal compartments.


Assuntos
Biomarcadores/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Células Estromais/metabolismo , Células Tecais/metabolismo , Transcriptoma , Animais , Bovinos , Feminino , Folículo Ovariano/citologia , Ovário/citologia , Transdução de Sinais , Células Estromais/citologia , Células Tecais/citologia
8.
PLoS One ; 14(3): e0213575, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30856218

RESUMO

Movement and expansion of mesonephric-derived stroma appears to be very important in the development of the ovary. Here, we examined the expression of 24 genes associated with stroma in fetal ovaries during gestation (n = 17; days 58-274) from Bos taurus cattle. RNA was isolated from ovaries for quantitative RT-PCR. Expression of the majority of genes in TGFß signalling, stromal transcription factors (NR2F2, AR), and some stromal matrix genes (COL1A1, COL3A1 and FBN1, but not FBN3) showed a positive linear increase with gestational age. Expression of genes associated with follicles (INSL3, CYP17A1, CYP11A1 and HSD3B1), was low until mid-gestation and then increased with gestational age. LHCGR showed an unusual bimodal pattern; high levels in the first and last trimesters. RARRES1 and IGFBP3 also increased with gestational age. To relate changes in gene expression in stromal cells with that in non stromal cells during development of the ovary we combined the data on the stromal genes with another 20 genes from non stromal cells published previously and then performed hierarchical clustering analysis. Three major clusters were identified. Cluster 1 genes (GATA4, FBN3, LHCGR, CYP19A1, ESR2, OCT4, DSG2, TGFB1, CCND2, LGR5, NR5A1) were characterised by high expression only in the first trimester. Cluster 2 genes (FSHR, INSL3, HSD3B1, CYP11A1, CYP17A1, AMH, IGFBP3, INHBA) were highly expressed in the third trimester and largely associated with follicle function. Cluster 3 (COL1A1, COL3A1, FBN1, TGFB2 TGFB3, TGFBR2, TGFBR3, LTBP2, LTBP3, LTBP4, TGFB1I1, ALDH1A1, AR, ESR1, NR2F2) had much low expression in the first trimester rising in the second trimester and remaining at that level during the third trimester. Cluster 3 contained members of two pathways, androgen and TGFß signalling, including a common member of both pathways namely the androgen receptor cofactor TGFß1 induced transcript 1 protein (TGFB1I1; hic5). GATA4, FBN3 and LHCGR, were highly correlated with each other and were expressed highly in the first trimester during stromal expansion before follicle formation, suggesting that this could be a critical phase in the development of the ovarian stroma.


Assuntos
Bovinos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Ovário/embriologia , Animais , Bovinos/genética , Bovinos/metabolismo , Feminino , Redes Reguladoras de Genes , Idade Gestacional , Família Multigênica , Ovário/citologia , Ovário/metabolismo , Gravidez , Transdução de Sinais , Células Tecais/citologia , Células Tecais/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
9.
PLoS One ; 14(3): e0214130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30901367

RESUMO

Cells on the surface of the mesonephros give rise to replicating Gonadal Ridge Epithelial-Like (GREL) cells, the first somatic cells of the gonadal ridge. Later germ cells associate with the GREL cells in the ovigerous cords, and the GREL cells subsequently give rise to the granulosa cells in follicles. To examine these events further, 27 bovine fetal ovaries of different gestational ages were collected and prepared for immunohistochemical localisation of collagen type I and Ki67 to identify regions of the ovary and cell proliferation, respectively. The non-stromal cortical areas (collagen-negative) containing GREL cells and germ cells and later in development, the follicles with oocytes and granulosa cells, were analysed morphometrically. Another set of ovaries (n = 17) were collected and the expression of genes associated with germ cell lineages and GREL/granulosa cells were quantitated by RT-PCR. The total volume of non-stromal areas in the cortex increased significantly and progressively with ovarian development, plateauing at the time the surface epithelium developed. However, the proportion of non-stromal areas in the cortex declined significantly and progressively throughout gestation, largely due to a cessation in growth of the non-stroma cells and the continued growth of stroma. The proliferation index in the non-stromal area was very high initially and then declined substantially at the time follicles formed. Thereafter, it remained low. The numerical density of the non-stromal cells was relatively constant throughout ovarian development. The expression levels of a number of genes across gestation either increased (AMH, FSHR, ESR1, INHBA), declined (CYP19A1, ESR2, ALDH1A1, DSG2, OCT4, LGR5) or showed no particular pattern (CCND2, CTNNB1, DAZL, FOXL2, GATA4, IGFBP3, KRT19, NR5A1, RARRES1, VASA, WNT2B). Many of the genes whose expression changed across gestation, were positively or negatively correlated with each other. The relationships between these genes may reflect their roles in the important events such as the transition of ovigerous cords to follicles, oogonia to oocytes or GREL cells to granulosa cells.


Assuntos
Bovinos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Ovário/embriologia , Animais , Bovinos/genética , Feminino , Células Germinativas/citologia , Células Germinativas/metabolismo , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Mesonefro/citologia , Mesonefro/embriologia , Mesonefro/metabolismo , Ovário/citologia , Ovário/metabolismo
10.
Med Hypotheses ; 124: 31-34, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30798911

RESUMO

Polycystic ovary syndrome (PCOS) affects around 10% of women of reproductive age and is most common in developed countries. The aetiology of PCOS is not completely understood. Current evidence suggests that the syndrome results from a genetic predisposition interacting with developmental events during fetal or perinatal life that together increase susceptibility in some individuals. This implies that environmental factors influence the initiation of PCOS in the fetus or infant, either directly or via the mother. PCOS is often considered to be an ancient disorder but there is no direct proof of this in the medical or historic record. One of the cardinal features, polycystic ovaries, was first described only in the early 1900s, despite reports of many thousands of autopsies recorded earlier. This conundrum could be explained by postulating that polycystic ovaries were rare before the 1900s and have become more common over the last 100 years. The hypothesis that PCOS is a syndrome of the 20th Century would eliminate the need to explain the paradox of why there exists a genetic predisposition to subfertility syndrome.


Assuntos
Síndrome do Ovário Policístico/epidemiologia , Síndrome do Ovário Policístico/história , Adulto , Androgênios , Comorbidade , Meio Ambiente , Feminino , Predisposição Genética para Doença , História do Século XX , História do Século XXI , Humanos , Infertilidade Feminina , Modelos Teóricos , Ovário/patologia , Síndrome do Ovário Policístico/etiologia , Prevalência
11.
PLoS One ; 12(3): e0173391, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28282394

RESUMO

In vitro culture of ovarian granulosa cells and theca cells has been very important for our understanding of their function and regulation. One of the most eagerly sought attributes of cell culture is the use of chemically-defined conditions. However, even under such in vitro conditions cell behaviour could differ from the in vivo situation because of differences in oxygen tension, nutrients, adhesion matrix and other factors. To examine this further we compared the transcriptomes of both granulosa cells and cells from the theca interna that were cultured in what are arguably the best in vitro conditions for maintaining the 'follicular' phenotypes of both tissue types, as displayed by their respective freshly-isolated counterparts. The array data analysed are from recently published data and use the same sizes of bovine follicles (small antral 3-6 mm) and the same Affymetrix arrays. We conducted analysis using Partek, Ingenuity Pathway Analysis and GOEAST. Principal Component Analysis (PCA) and hierarchical clustering clearly separated the in vivo from the in vitro groups for both cells types and transcriptomes were more homogeneous upon culture. In both cell cultures behaviours associated with cell adhesion, migration and interaction with matrix or substrate were more abundant. However, the pathways involved generally differed between the two cell types. With the thecal cultures a gene expression signature of an immune response was more abundant, probably by leukocytes amongst the cells cultured from the theca interna. These results indicate differences between in vivo and in vitro that should be considered when interpreting in vitro data.


Assuntos
Células da Granulosa/metabolismo , Células Tecais/metabolismo , Transcriptoma , Animais , Bovinos , Células Cultivadas , Análise por Conglomerados , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Células da Granulosa/citologia , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , RNA/isolamento & purificação , RNA/metabolismo , Células Tecais/citologia , Regulação para Cima
12.
Reproduction ; 152(2): 127-37, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27222596

RESUMO

Fibrillins 1-3 are stromal extracellular matrix proteins that play important roles in regulating TGFß activity, which stimulates fibroblasts to proliferate and synthesize collagen. In the developing ovary, the action of stroma is initially necessary for the formation of ovigerous cords and subsequently for the formation of follicles and the surface epithelium of the ovary. FBN3 is highly expressed only in early ovarian development and then it declines. In contrast, FBN1 and 2 are upregulated in later ovarian development. We examined the expression of FBN1-3 in bovine and human fetal ovaries. We used cell dispersion and monolayer culture, cell passaging and tissue culture. Cells were treated with growth factors, hormones or inhibitors to assess the regulation of expression of FBN1-3 When bovine fetal ovarian tissue was cultured, FBN3 expression declined significantly. Treatment with TGFß-1 increased FBN1 and FBN2 expression in bovine fibroblasts, but did not affect FBN3 expression. Additionally, in cultures of human fetal ovarian fibroblasts (9-17weeks gestational age), the expression of FBN1 and FBN2 increased with passage, whereas FBN3 dramatically decreased. Treatment with activin A and a TGFß family signaling inhibitor, SB431542, differentially regulated the expression of a range of modulators of TGFß signaling and of other growth factors in cultured human fetal ovarian fibroblasts suggesting that TGFß signaling is differentially involved in the regulation of ovarian fibroblasts. Additionally, since the changes in FBN1-3 expression that occur in vitro are those that occur with increasing gestational age in vivo, we suggest that the fetal ovarian fibroblasts mature in vitro.


Assuntos
Ativinas/metabolismo , Feto/metabolismo , Fibrilinas/metabolismo , Regulação da Expressão Gênica , Ovário/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Bovinos , Células Cultivadas , Feminino , Feto/citologia , Fibrilina-1/metabolismo , Fibrilina-2/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Ovário/citologia , Gravidez
13.
PLoS One ; 10(3): e0119800, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25775029

RESUMO

In studies using isolated ovarian granulosa and thecal cells it is important to assess the degree of cross contamination. Marker genes commonly used for granulosa cells include FSHR, CYP19A1 and AMH while CYP17A1 and INSL3 are used for thecal cells. To increase the number of marker genes available we compared expression microarray data from isolated theca interna with that from granulosa cells of bovine small (n = 10 for both theca and granulosa cells; 3-5 mm) and large (n = 4 for both theca and granulosa cells, > 9 mm) antral follicles. Validation was conducted by qRT-PCR analyses. Known markers such as CYP19A1, FSHR and NR5A2 and another 11 genes (LOC404103, MGARP, GLDC, CHST8, CSN2, GPX3, SLC35G1, CA8, CLGN, FAM78A, SLC16A3) were common to the lists of the 50 most up regulated genes in granulosa cells from both follicle sizes. The expression in theca interna was more consistent than in granulosa cells between the two follicle sizes. Many genes up regulated in theca interna were common to both sizes of follicles (MGP, DCN, ASPN, ALDH1A1, COL1A2, FN1, COL3A1, OGN, APOD, COL5A2, IGF2, NID1, LHFP, ACTA2, DUSP12, ACTG2, SPARCL1, FILIP1L, EGFLAM, ADAMDEC1, HPGD, COL12A1, FBLN5, RAMP2, COL15A1, PLK2, COL6A3, LOXL1, RARRES1, FLI1, LAMA2). Many of these were stromal extracellular matrix genes. MGARP, GLDC, CHST8, GPX3 were identified as new potential markers for granulosa cells, while FBLN5, OGN, RAMP2 were significantly elevated in the theca interna.


Assuntos
Biomarcadores/metabolismo , Perfilação da Expressão Gênica/métodos , Células da Granulosa/metabolismo , Células Tecais/metabolismo , Animais , Bovinos , Feminino , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
14.
PLoS One ; 9(6): e99706, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24956388

RESUMO

The theca interna is a specialized stromal layer that envelops each growing ovarian follicle. It contains capillaries, fibroblasts, immune cells and the steroidogenic cells that synthesize androgens for conversion to estradiol by the neighboring granulosa cells. During reproductive life only a small number of follicles will grow to a sufficient size to ovulate, whereas the majority of follicles will undergo regression/atresia and phagocytosis by macrophages. To identify genes which are differentially regulated in the theca interna during follicular atresia, we undertook transcriptome profiling of the theca interna from healthy (n = 10) and antral atretic (n = 5) bovine follicles at early antral stages (<5 mm). Principal Component Analyses and hierarchical classification of the signal intensity plots for the arrays showed primary clustering into two groups, healthy and atretic. A total of 543 probe sets were differentially expressed between the atretic and healthy theca interna. Further analyses of these genes by Ingenuity Pathway Analysis and Gene Ontology Enrichment Analysis Toolkit software found most of the genes being expressed were related to cytokines, hormones and receptors as well as the cell cycle and DNA replication. Cell cycle genes which encode components of the replicating chromosome complex and mitotic spindle were down-regulated in atretic theca interna, whereas stress response and inflammation-related genes such as TP53, IKBKB and TGFB1 were up-regulated. In addition to cell cycle regulators, upstream regulators that were predicted to be inhibited included Retinoblastoma 1, E2 transcription factor 1, and hepatocyte growth factor. Our study suggests that during antral atresia of small follicles in the theca interna, arrest of cell cycle and DNA replication occurs rather than up- regulation of apoptosis-associated genes as occurs in granulosa cells.


Assuntos
Atresia Folicular/metabolismo , Perfilação da Expressão Gênica , Software , Células Tecais/metabolismo , Transcriptoma/fisiologia , Animais , Bovinos , Feminino , Células Tecais/citologia
15.
PLoS One ; 9(5): e97489, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830430

RESUMO

The theca interna layer of the ovarian follicle forms during the antral stage of follicle development and lies adjacent to and directly outside the follicular basal lamina. It supplies androgens and communicates with the granulosa cells and the oocyte by extracellular signaling. To better understand developmental changes in the theca interna, we undertook transcriptome profiling of the theca interna from small (3-5 mm, n = 10) and large (9-12 mm, n = 5) healthy antral bovine follicles, representing a calculated >7-fold increase in the amount of thecal tissue. Principal Component Analysis and hierarchical classification of the signal intensity plots for the arrays showed no clustering of the theca interna samples into groups depending on follicle size or subcategories of small follicles. From the over 23,000 probe sets analysed, only 76 were differentially expressed between large and small healthy follicles. Some of the differentially expressed genes were associated with processes such as myoblast differentiation, protein ubiquitination, nitric oxide and transforming growth factor ß signaling. The most significant pathway affected from our analyses was found to be Wnt signaling, which was suppressed in large follicles via down-regulation of WNT2B and up-regulation of the inhibitor FRZB. These changes in the transcriptional profile could have been due to changes in cellular function or alternatively since the theca interna is composed of a number of different cell types it could have been due to any systematic change in the volume density of any particular cell type. However, our study suggests that the transcriptional profile of the theca interna is relatively stable during antral follicle development unlike that of granulosa cells observed previously. Thus both the cellular composition and cellular behavior of the theca interna and its contribution to follicular development appear to be relatively constant throughout the follicle growth phase examined.


Assuntos
Perfilação da Expressão Gênica/métodos , Folículo Ovariano/patologia , Células Tecais/patologia , Transcriptoma , Animais , Bovinos , Regulação para Baixo , Matriz Extracelular/metabolismo , Feminino , Glicoproteínas/metabolismo , Células da Granulosa/citologia , Peptídeos e Proteínas de Sinalização Intracelular , Mioblastos/citologia , Óxido Nítrico/química , Análise de Sequência com Séries de Oligonucleotídeos , Oócitos/citologia , Estresse Oxidativo , Análise de Componente Principal , Transdução de Sinais , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo
16.
BMC Genomics ; 15: 24, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24422759

RESUMO

BACKGROUND: At later stages of folliculogenesis, the mammalian ovarian follicle contains layers of epithelial granulosa cells surrounding an antral cavity. During follicle development granulosa cells replicate, secrete hormones and support the growth of the oocyte. In cattle, the follicle needs to grow > 10 mm in diameter to allow an oocyte to ovulate, following which the granulosa cells cease dividing and differentiate into the specialised cells of the corpus luteum. To better understand the molecular basis of follicular growth and granulosa cell maturation, we undertook transcriptome profiling of granulosa cells from small (< 5 mm; n = 10) and large (> 10 mm, n = 4) healthy bovine follicles using Affymetrix microarrays (24,128 probe sets). RESULTS: Principal component analysis for the first two components and hierarchical clustering showed clustering into two groups, small and large, with the former being more heterogeneous. Size-frequency distributions of the coefficient of variation of the signal intensities of each probe set also revealed that small follicles were more heterogeneous than the large. IPA and GO enrichment analyses revealed that processes of axonal guidance, immune signalling and cell rearrangement were most affected in large follicles. The most important networks were associated with: (A) Notch, SLIT/ROBO and PI3K signalling, and (B) ITGB5 and extracellular matrix signalling through extracellular signal related kinases (ERKs). Upstream regulator genes which were predicted to be active in large follicles included STAT and XBP1. By comparison, developmental processes such as those stimulated by KIT, IHH and MEST were most active in small follicles. MGEA5 was identified as an upstream regulator in small follicles. It encodes an enzyme that modifies the activity of many target proteins, including those involved in energy sensing, by removal of N-acetylglucosamine from serine and threonine residues. CONCLUSIONS: Our data suggest that as follicles enlarge more genes and/or pathways are activated than are inactivated, and gene expression becomes more uniform. These findings could be interpreted that either the cells in large follicles are more uniform in their gene expression, or that follicles are more uniform or a combination of both and that additional factors, such as LH, are additionally controlling the granulosa cells.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Animais , Bovinos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células da Granulosa/citologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Análise de Componente Principal , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
BMC Genomics ; 15: 40, 2014 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-24438529

RESUMO

BACKGROUND: The major function of the ovary is to produce oocytes for fertilisation. Oocytes mature in follicles surrounded by nurturing granulosa cells and all are enclosed by a basal lamina. During growth, granulosa cells replicate and a large fluid-filled cavity (the antrum) develops in the centre. Only follicles that have enlarged to over 10 mm can ovulate in cows. In mammals, the number of primordial follicles far exceeds the numbers that ever ovulate and atresia or regression of follicles is a mechanism to regulate the number of oocytes ovulated and to contribute to the timing of ovulation. To better understand the molecular basis of follicular atresia, we undertook transcriptome profiling of granulosa cells from healthy (n = 10) and atretic (n = 5) bovine follicles at early antral stages (< 5 mm). RESULTS: Principal Component Analysis (PCA) and hierarchical classification of the signal intensity plots for the arrays showed primary clustering into two groups, healthy and atretic. These analyses and size-frequency plots of coefficients of variation of signal intensities revealed that the healthy follicles were more heterogeneous. Examining the differentially-expressed genes the most significantly affected functions in atretic follicles were cell death, organ development, tissue development and embryonic development. The overall processes influenced by transcription factor gene TP53 were predicted to be activated, whereas those of MYC were inhibited on the basis of known interactions with the genes in our dataset. The top ranked canonical pathway contained signalling molecules common to various inflammatory/fibrotic pathways such as the transforming growth factor-ß and tumour necrosis factor-α pathways. The two most significant networks also reflect this pattern of tissue remodelling/fibrosis gene expression. These networks also contain molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor-ß signalling and were up regulated. CONCLUSIONS: Small healthy antral follicles, which have a number of growth outcomes, exhibit greater variability in gene expression, particularly in genes associated with cell division and other growth-related functions. Atresia, on the other hand, not only involves cell death but clearly is an active process similar to wound healing.


Assuntos
Atresia Folicular/genética , Perfilação da Expressão Gênica , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Animais , Apoptose , Bovinos , Análise por Conglomerados , Feminino , Atresia Folicular/metabolismo , Regulação da Expressão Gênica , Células da Granulosa/citologia , Folículo Ovariano/crescimento & desenvolvimento , Fenótipo , Análise de Componente Principal , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
PLoS One ; 8(2): e55578, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409002

RESUMO

Ovarian follicular granulosa cells surround and nurture oocytes, and produce sex steroid hormones. It is believed that during development the ovarian surface epithelial cells penetrate into the ovary and develop into granulosa cells when associating with oogonia to form follicles. Using bovine fetal ovaries (n = 80) we identified a novel cell type, termed GREL for Gonadal Ridge Epithelial-Like. Using 26 markers for GREL and other cells and extracellular matrix we conducted immunohistochemistry and electron microscopy and chronologically tracked all somatic cell types during development. Before 70 days of gestation the gonadal ridge/ovarian primordium is formed by proliferation of GREL cells at the surface epithelium of the mesonephros. Primordial germ cells (PGCs) migrate into the ovarian primordium. After 70 days, stroma from the underlying mesonephros begins to penetrate the primordium, partitioning the developing ovary into irregularly-shaped ovigerous cords composed of GREL cells and PGCs/oogonia. Importantly we identified that the cords are always separated from the stroma by a basal lamina. Around 130 days of gestation the stroma expands laterally below the outermost layers of GREL cells forming a sub-epithelial basal lamina and establishing an epithelial-stromal interface. It is at this stage that a mature surface epithelium develops from the GREL cells on the surface of the ovary primordium. Expansion of the stroma continues to partition the ovigerous cords into smaller groups of cells eventually forming follicles containing an oogonium/oocyte surrounded by GREL cells, which become granulosa cells, all enclosed by a basal lamina. Thus in contrast to the prevailing theory, the ovarian surface epithelial cells do not penetrate into the ovary to form the granulosa cells of follicles, instead ovarian surface epithelial cells and granulosa cells have a common precursor, the GREL cell.


Assuntos
Modelos Biológicos , Folículo Ovariano/embriologia , Ovário/embriologia , Animais , Sequência de Bases , Bovinos , Primers do DNA , Feminino , Imuno-Histoquímica , Masculino , Gravidez
19.
Mol Cell Endocrinol ; 363(1-2): 62-73, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-22863478

RESUMO

In the ovarian follicular membrana granulosa there are morphological and functional differences between cells adjacent to the follicular fluid lumen, or aligning the basal lamina. Amongst the observed functional differences are steroidogenic capacity and expression levels of a novel basal lamina, focimatrix; both of which increase in the later stages of antral follicle growth. A number of different studies have produced apparently inconsistent results as to which cell layers are more steroidogenic. To examine this systematically, individual bovine follicles, confirmed as healthy by post hoc histological examination, were used to isolate populations of apical and basal granulosa cells. Cell counts revealed that the respective groups did not differ in the numbers of cells, thus confirming the separation of these populations. We measured gene expression (quantitative RT-PCR, n=8-10, follicle diameter 14.0±0.5 mm) and protein levels (Western immunoblotting, n=14, follicle diameter 11.9±0.5 mm) and hormone production from granulosa cells (2.5×10(5) viable cells/well in serum-free conditions for 24 h, n=15, diameter 12±0.5 mm). Levels of mRNA of HSD3B1 and CYP19A1 and three focimatrix genes COL4A1, HSPG2 and LAMB2 and LHCGR were significantly lower in apical granulosa cells (P<0.05), whereas, expression of CYP11A1 and HSD17B1 were not different (P>0.05). The protein levels of steroidogenic enzymes P450scc and P450arom were significantly higher in apical cells (P<0.05), whereas those of 3ß-hydroxysteroid dehydrogenase and 17ß-hydroxysteroid dehydrogenase type 1 were not different (P>0.05). Progesterone production was significantly lower and oestradiol production was significantly higher in apical granulosa cells (P<0.05). These results confirm that apical and basal cells are functionally different, and the differences might be explained by the location of cells of different ages and maturity within the membrana granulosa. Discrepancies in the literature on their steroidogenic capacity may reflect differences in the steroidogenic parameters measured.


Assuntos
Estradiol/biossíntese , Proteínas da Matriz Extracelular/metabolismo , Expressão Gênica , Células da Granulosa/metabolismo , Progesterona/biossíntese , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/genética , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/metabolismo , Animais , Aromatase/genética , Aromatase/metabolismo , Bovinos , Células Cultivadas , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Células da Granulosa/enzimologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Folículo Ovariano/citologia , Receptores da Gonadotropina/genética , Receptores da Gonadotropina/metabolismo
20.
Matrix Biol ; 31(1): 45-56, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22057033

RESUMO

To examine the detailed composition of glycosaminoglycans during bovine ovarian follicular development and atresia, the specialized stromal theca layers were separated from the stratified epithelial granulosa cells of healthy (n=6) and atretic (n=6) follicles in each of three size ranges: small (3-5mm), medium (6-9mm) and large (10mm or more) (n=29 animals). Fluorophore-assisted carbohydrate electrophoresis analyses (on a per cell basis) and immunohistochemistry (n=14) were undertaken. We identified the major disaccharides in thecal layers and the membrana granulosa as chondroitin sulfate-derived ∆uronic acid with 4-sulfated N-acetylgalactosamine and ∆uronic acid with 6-sulfated N-acetylgalactosamine and the heparan sulfate-derived Δuronic acid with N-acetlyglucosamine, with elevated levels in the thecal layers. Increasing follicle size and atresia was associated with increased levels of some disaccharides. We concluded that versican contains 4-sulfated N-acetylgalactosamine and it is the predominant 4-sulfated N-acetylgalactosamine proteoglycan in antral follicles. At least one other non- or 6-sulfated N-acetylgalactosamine proteoglycan(s), which is not decorin or an inter-α-trypsin inhibitor family member, is present in bovine antral follicles and associated with hitherto unknown groups of cells around some larger blood vessels. These areas stained positively for chondroitin/dermatan sulfate epitopes [antibodies 7D4, 3C5, and 4C3], similar to stem cell niches observed in other tissues. The sulfation pattern of heparan sulfate glycosaminoglycans appears uniform across follicles of different sizes and in healthy and atretic follicles. The heparan sulfate products detected in the follicles are likely to be associated with perlecan, collagen XVIII or betaglycan.


Assuntos
Sulfatos de Condroitina/análise , Atresia Folicular/metabolismo , Glicômica/métodos , Heparitina Sulfato/análise , Folículo Ovariano/química , Folículo Ovariano/crescimento & desenvolvimento , Versicanas/análise , alfa-Globulinas/análise , alfa-Globulinas/metabolismo , Animais , Bovinos , Sulfatos de Condroitina/metabolismo , Dissacarídeos/análise , Dissacarídeos/metabolismo , Feminino , Células da Granulosa/metabolismo , Heparitina Sulfato/metabolismo , Ácido Hialurônico/análise , Ácido Hialurônico/metabolismo , Proteoglicanas/análise , Proteoglicanas/metabolismo , Células Tecais/metabolismo , Versicanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA