RESUMO
BACKGROUND: Physical functioning is a crucial factor for independence and quality of life in old age. The aim of the "bestform-Best function of range of motion" trial is to investigate the effects of a 6 months multimodal machine-based strength, coordination and endurance training on physical function, risk of falls and health parameters in older adults. METHODS: Bestform is a cluster-randomised trial including older adults ≥ 65 years living in senior care facilities in Southern Germany. Senior care facilities are randomly allocated to the control group with usual care (n ≥ 10 care facilities) and to the intervention group (n ≥ 10 care facilities), overall including ≥ 400 seniors. Residents belonging to the intervention group are offered a supervised machine-based exercise training programme twice weekly over 45-60 min over six months in small groups, while those in the usual care facilities will not receive active intervention. The primary outcome is the change in Short Physical Performance Battery over six months between groups. Secondary outcomes are change in risk of falling, fear of falling, number of falls and fall-related injuries, physical exercise capacity, handgrip strength, body composition, cardiac function, blood parameters, quality of life, risk of sarcopenia, activities of daily living, and cognition over three and six months. DISCUSSION: The bestform study investigates the change in physical function between seniors performing exercise intervention versus usual care over six months. The results of the study will contribute to the development of effective physical activity concepts in senior care facilities. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04207307. Registered December 2019.
Assuntos
Acidentes por Quedas , Atividades Cotidianas , Humanos , Idoso , Acidentes por Quedas/prevenção & controle , Medo , Força da Mão , Qualidade de Vida , Amplitude de Movimento Articular , Exercício Físico , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
The validity of the Brink-Axel hypothesis, which is especially important for numerous astrophysical calculations, is addressed for ^{116,120,124}Sn below the neutron separation energy by means of three independent experimental methods. The γ-ray strength functions (GSFs) extracted from primary γ-decay spectra following charged-particle reactions with the Oslo method and with the shape method demonstrate excellent agreement with those deduced from forward-angle inelastic proton scattering at relativistic beam energies. In addition, the GSFs are shown to be independent of excitation energies and spins of the initial and final states. The results provide a critical test of the generalized Brink-Axel hypothesis in heavy nuclei, demonstrating its applicability in the energy region of the pygmy dipole resonance.
RESUMO
Hydrogels are soft, water-based polymer gels that are increasingly used to fabricate free-standing fluidic devices for tissue and biological engineering applications. For many of these applications, pressurized liquid must be driven through the hydrogel device. To couple pressurized liquid to a hydrogel device, a common approach is to insert tubing into a hole in the gel; however, this usually results in leakage and expulsion of the tubing, and other options for coupling pressurized liquid to hydrogels remain limited. Here, we describe a simple coupling approach where microfluidic tubing is inserted into a plastic, 3D-printed bulb-shaped connector, which "pops" into a 3D-printed socket in the gel. By systematically varying the dimensions of the connector relative to those of the socket entrance, we find an optimal head-socket ratio that provides maximum resistance to leakage and expulsion. The resulting connection can withstand liquid pressures on the order of several kilopascals, three orders of magnitude greater than traditional, connector-free approaches. We also show that two-sided connectors can be used to link multiple hydrogels to one another to build complex, reconfigurable hydrogel systems from modular components. We demonstrate the potential usefulness of these connectors by established long-term nutrient flow through a 3D-printed hydrogel device containing bacteria. The simple coupling approach outlined here will enable a variety of applications in hydrogel fluidics.
Assuntos
Hidrogéis , Microfluídica , PolímerosRESUMO
A direct measurement of the decay width of the excited 0_{1}^{+} state of ^{6}Li using the relative self-absorption technique is reported. Our value of Γ_{γ,0_{1}^{+}â1_{1}^{+}}=8.17(14)_{stat.}(11)_{syst.} eV provides sufficiently low experimental uncertainties to test modern theories of nuclear forces. The corresponding transition rate is compared to the results of ab initio calculations based on chiral effective field theory that take into account contributions to the magnetic dipole operator beyond leading order. This enables a precision test of the impact of two-body currents that enter at next-to-leading order.
RESUMO
In the application of range of motion (ROM) tests there is little agreement on the number of repetitions to be measured and the number of preceding warm-up protocols. In stretch training a plateau in ROM gains can be seen after four to five repetitions. With increasing number of repetitions, the gain in ROM is reduced. This study examines the question of whether such an effect occurs in common ROM tests. Twenty-two healthy sport students (10 m/12 f.) with an average age of 25.3 ± 1.94 years (average height 174.1 ± 9.8 cm; weight 66.6 ± 11.3 kg and BMI 21.9 ± 2.0 kg/cm2) volunteered in this study. Each subject performed five ROM tests in a randomized order-measured either via a tape measure or a digital inclinometer: Tape measure was used to evaluate the Fingertip-to-Floor test (FtF) and the Lateral Inclination test (LI). Retroflexion of the trunk modified after Janda (RF), Thomas test (TT) and a Shoulder test modified after Janda (ST) were evaluated with a digital inclinometer. In order to show general acute effects within 20 repetitions we performed ANOVA/Friedman-test with multiple comparisons. A non-linear regression was then performed to identify a plateau formation. Significance level was set at 5%. In seven out of eight ROM tests (five tests in total with three tests measured both left and right sides) significant flexibility gains were observed (FtF: p < 0.001; LI-left/right: p < 0.001/0.001; RF: p = 0.009; ST-left/right: p < 0.001/p = 0.003; TT-left: p < 0.001). A non-linear regression with random effects was successfully applied on FtF, RF, LI-left/right, ST-left and TT-left and thus, indicate a gradual decline in the amount of gained ROM. An acute effect was observed in most ROM tests, which is characterized by a gradual decline of ROM gain. For those tests, we can state that the acute effect described in the stretching literature also applies to the performance of typical ROM tests. Since a non-linear behavior was shown, it is the decision of the practitioner to weigh up between measurement accuracy and expenditure. Researchers and practitioners should consider this when applying ROM assessments to healthy young adults.
Assuntos
Teste de Esforço/métodos , Voluntários Saudáveis , Exercícios de Alongamento Muscular/fisiologia , Condicionamento Físico Humano/fisiologia , Amplitude de Movimento Articular/fisiologia , Adulto , Feminino , Humanos , Masculino , Estudos Prospectivos , Ombro/fisiologia , Tronco/fisiologia , Adulto JovemRESUMO
The size of a ΔK=0 M1 excitation strength has been determined for the first time in a predominantly axially deformed even-even nucleus. It has been obtained from the observation of a rare K-mixing situation between two close-lying J^{π}=1^{+} states of the nucleus ^{164}Dy with components characterized by intrinsic projection quantum numbers K=0 and K=1. Nuclear resonance fluorescence induced by quasimonochromatic linearly polarized γ-ray beams provided evidence for K mixing of the 1^{+} states at 3159.1(3) and 3173.6(3) keV in excitation energy from their γ-decay branching ratios into the ground-state band. The ΔK=0 transition strength of B(M1;0_{1}^{+}â1_{K=0}^{+})=0.008(1)µ_{N}^{2} was inferred from a mixing analysis of their M1 transition rates into the ground-state band. It is in agreement with predictions from the quasiparticle phonon nuclear model. This determination represents first experimental information on the M1 excitation strength of a nuclear quantum state with a negative R-symmetry quantum number.
RESUMO
The E2/M1 multipole mixing ratio δ_{1â2} of the 1_{sc}^{+}â2_{1}^{+} γ-ray decay in ^{156}Gd and hence the isovector E2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ-ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched ^{156}Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying J^{π}=2^{+} member of the rotational band of states on top of the 1^{+} band head is obtained, too, indicating a significant signature splitting in the K=1 scissors mode rotational band.