Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(29): 6610-6619, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37459252

RESUMO

Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict the high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water.


Assuntos
Aprendizado de Máquina , Água , Proteínas de Fluorescência Verde/química , Ligação de Hidrogênio , Água/química , Análise Espectral
2.
J Chem Phys ; 158(17)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37125706

RESUMO

Real-time (RT) electron density propagation with time-dependent density functional theory (TDDFT) or Hartree-Fock (TDHF) is one of the most popular methods to model the charge transfer in molecules and materials. However, both RT-TDHF and RT-TDDFT within the adiabatic approximation are known to produce inaccurate evolution of the electron density away from the ground state in model systems, leading to large errors in charge transfer and erroneous shifting of peaks in absorption spectra. Given the poor performance of these methods with small model systems and the widespread use of the methods with larger molecular and material systems, here we bridge the gap in our understanding of these methods and examine the size-dependence of errors in RT density propagation. We analyze the performance of RT density propagation for systems of increasing size during the application of a continuous resonant field to induce Rabi-like oscillations, during charge-transfer dynamics, and for peak shifting in simulated absorption spectra. We find that the errors in the electron dynamics are indeed size dependent for these phenomena, with the largest system producing the results most aligned with those expected from linear response theory. The results suggest that although the RT-TDHF and RT-TDDFT methods may produce severe errors for model systems, the errors in charge transfer and resonantly driven electron dynamics may be much less significant for more realistic, large-scale molecules and materials.

3.
J Phys Chem Lett ; 14(16): 3869-3877, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37067482

RESUMO

Rigid nonpolarizable water models with fixed point charges have been widely employed in molecular dynamics simulations due to their efficiency and reasonable accuracy for the potential energy surface. However, the dipole moment surface of water is not necessarily well-described by the same fixed charges, leading to failure in reproducing dipole-related properties. Here, we developed a machine-learning model trained against electronic structure data to assign point charges for water, and the resulting dipole moment surface significantly improved the predictions of the dielectric constant and the low-frequency IR spectrum of liquid water. Our analysis reveals that within our atom-centered point-charge description of the dipole moment surface, the intermolecular charge transfer is the major source of the peak intensity at 200 cm-1, whereas the intramolecular polarization controls the enhancement of the dielectric constant. The effects of exact Hartree-Fock exchange in the hybrid density functional on these properties are also discussed.

4.
J Chem Theory Comput ; 18(5): 3039-3051, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35472264

RESUMO

The simulation of optical spectra is essential to molecular characterization and, in many cases, critical for interpreting experimental spectra. The most common method for simulating vibronic absorption spectra relies on the geometry optimization and computation of normal modes for ground and excited electronic states. In this report, we show that the utilization of such a procedure within an adiabatic linear response (LR) theory framework may lead to state mixings and a breakdown of the Born-Oppenheimer approximation, resulting in a poor description of absorption spectra. In contrast, computing excited states via a self-consistent field method in conjunction with a maximum overlap model produces states that are not subject to such mixings. We show that this latter method produces vibronic spectra much more aligned with vertical gradient and molecular dynamics (MD) trajectory-based approaches. For the methylene blue chromophore, we compare vibronic absorption spectra computed with the following: an adiabatic Hessian approach with LR theory-optimized structures and normal modes, a vertical gradient procedure, the Hessian and normal modes of maximum overlap method-optimized structures, and excitation energy time-correlation functions generated from an MD trajectory. Because of mixing between the bright S1 and dark S2 surfaces near the S1 minimum, computing the adiabatic Hessian with LR theory and time-dependent density functional theory with the B3LYP density functional predicts a large vibronic shoulder for the absorption spectrum that is not present for any of the other methods. Spectral densities are analyzed and we compare the behavior of the key normal mode that in LR theory strongly couples to the optical excitation while showing S1/S2 state mixings. Overall, our study provides a note of caution in computing vibronic spectra using the excited-state adiabatic Hessian of LR theory-optimized structures and also showcases three alternatives that are less sensitive to adiabatic state mixing effects.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Azul de Metileno
5.
J Phys Chem B ; 125(44): 12214-12227, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726915

RESUMO

The environment surrounding a chromophore can dramatically affect the energy absorption and relaxation process, as manifested in optical spectra. Simulations of nonlinear optical spectroscopy, such as two-dimensional electronic spectroscopy (2DES) and transient absorption (TA), will be influenced by the computational model of the environment. We here compare a fixed point charge molecular mechanics model and a quantum mechanical (QM) model of the environment in computed 2DES and TA spectra of Nile red in water and the chromophore of photoactive yellow protein (PYP) in water and protein environments. In addition to simulating these nonlinear optical spectra, we directly juxtapose the computed excitation energy correlation function to the dynamic Stokes shift function often used to analyze environment dynamics. Overall, we find that for the three systems studied here the mutual electronic polarization provided by the QM environment manifests in broader 2DES signals, as well as a larger reorganization energy and a larger static Stokes shift due to stronger coupling between the chromophore and the environment.


Assuntos
Simulação de Dinâmica Molecular , Água , Eletrônica , Teoria Quântica , Análise Espectral
6.
J Chem Phys ; 155(14): 144112, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34654312

RESUMO

Modeling linear absorption spectra of solvated chromophores is highly challenging as contributions are present both from coupling of the electronic states to nuclear vibrations and from solute-solvent interactions. In systems where excited states intersect in the Condon region, significant non-adiabatic contributions to absorption line shapes can also be observed. Here, we introduce a robust approach to model linear absorption spectra accounting for both environmental and non-adiabatic effects from first principles. This model parameterizes a linear vibronic coupling (LVC) Hamiltonian directly from energy gap fluctuations calculated along molecular dynamics (MD) trajectories of the chromophore in solution, accounting for both anharmonicity in the potential and direct solute-solvent interactions. The resulting system dynamics described by the LVC Hamiltonian are solved exactly using the thermalized time-evolving density operator with orthogonal polynomials algorithm (T-TEDOPA). The approach is applied to the linear absorption spectrum of methylene blue in water. We show that the strong shoulder in the experimental spectrum is caused by vibrationally driven population transfer between the bright S1 and the dark S2 states. The treatment of the solvent environment is one of many factors that strongly influence the population transfer and line shape; accurate modeling can only be achieved through the use of explicit quantum mechanical solvation. The efficiency of T-TEDOPA, combined with LVC Hamiltonian parameterizations from MD, leads to an attractive method for describing a large variety of systems in complex environments from first principles.

7.
J Chem Phys ; 154(8): 084116, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33639769

RESUMO

Accurately simulating the linear and nonlinear electronic spectra of condensed phase systems and accounting for all physical phenomena contributing to spectral line shapes presents a significant challenge. Vibronic transitions can be captured through a harmonic model generated from the normal modes of a chromophore, but it is challenging to also include the effects of specific chromophore-environment interactions within such a model. We work to overcome this limitation by combining approaches to account for both explicit environment interactions and vibronic couplings for simulating both linear and nonlinear optical spectra. We present and show results for three approaches of varying computational cost for combining ensemble sampling of chromophore-environment configurations with Franck-Condon line shapes for simulating linear spectra. We present two analogous approaches for nonlinear spectra. Simulated absorption spectra and two-dimensional electronic spectra (2DES) are presented for the Nile red chromophore in different solvent environments. Employing an average Franck-Condon or 2DES line shape appears to be a promising method for simulating linear and nonlinear spectroscopy for a chromophore in the condensed phase.

8.
Annu Rev Phys Chem ; 72: 165-188, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33395546

RESUMO

Including both environmental and vibronic effects is important for accurate simulation of optical spectra, but combining these effects remains computationally challenging. We outline two approaches that consider both the explicit atomistic environment and the vibronic transitions. Both phenomena are responsible for spectral shapes in linear spectroscopy and the electronic evolution measured in nonlinear spectroscopy. The first approach utilizes snapshots of chromophore-environment configurations for which chromophore normal modes are determined. We outline various approximations for this static approach that assumes harmonic potentials and ignores dynamic system-environment coupling. The second approach obtains excitation energies for a series of time-correlated snapshots. This dynamic approach relies on the accurate truncation of the cumulant expansion but treats the dynamics of the chromophore and the environment on equal footing. Both approaches show significant potential for making strides toward more accurate optical spectroscopy simulations of complex condensed phase systems.

9.
J Chem Theory Comput ; 17(2): 889-901, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33405925

RESUMO

Partial atomic charges provide an intuitive and efficient way to describe the charge distribution and the resulting intermolecular electrostatic interactions in liquid water. Many charge models exist and it is unclear which model provides the best assignment of partial atomic charges in response to the local molecular environment. In this work, we systematically scrutinize various electronic structure methods and charge models (Mulliken, natural population analysis, CHelpG, RESP, Hirshfeld, Iterative Hirshfeld, and Bader) by evaluating their performance in predicting the dipole moments of isolated water, water clusters, and liquid water as well as charge transfer in the water dimer and liquid water. Although none of the seven charge models is capable of fully capturing the dipole moment increase from isolated water (1.85 D) to liquid water (about 2.9 D), the Iterative Hirshfeld method performs best for liquid water, reproducing its experimental average molecular dipole moment, yielding a reasonable amount of intermolecular charge transfer, and showing modest sensitivity to the local water environment. The performance of the charge model is dependent on the choice of the density functional and the quantum treatment of the environment. The computed molecular dipole moment of water generally increases with the percentage of the exact Hartree-Fock exchange in the functional, whereas the amount of charge transfer between molecules decreases. For liquid water, including two full solvation shells of surrounding water molecules (within about 5.5 Å of the central water) in the quantum chemical calculation converges the charges of the central water molecule. Our final pragmatic quantum chemical charge-assigning protocol for liquid water is the Iterative Hirshfeld method with M06-HF/aug-cc-pVDZ and a quantum region cutoff radius of 5.5 Å.

10.
J Chem Phys ; 153(4): 044127, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32752702

RESUMO

First-principles modeling of nonlinear optical spectra in the condensed phase is highly challenging because both environment and vibronic interactions can play a large role in determining spectral shapes and excited state dynamics. Here, we compute two dimensional electronic spectroscopy (2DES) signals based on a cumulant expansion of the energy gap fluctuation operator, with specific focus on analyzing mode mixing effects introduced by the Duschinsky rotation and the role of the third order term in the cumulant expansion for both model and realistic condensed phase systems. We show that for a harmonic model system, the third order cumulant correction captures effects introduced by a mismatch in curvatures of ground and excited state potential energy surfaces, as well as effects of mode mixing. We also demonstrate that 2DES signals can be accurately reconstructed from purely classical correlation functions using quantum correction factors. We then compute nonlinear optical spectra for the Nile red and methylene blue chromophores in solution, assessing the third order cumulant contribution for realistic systems. We show that the third order cumulant correction is strongly dependent on the treatment of the solvent environment, revealing the interplay between environmental polarization and the electronic-vibrational coupling.

11.
J Phys Chem Lett ; 11(18): 7559-7568, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32808797

RESUMO

The excited-state dynamics of chromophores in complex environments determine a range of vital biological and energy capture processes. Time-resolved, multidimensional optical spectroscopies provide a key tool to investigate these processes. Although theory has the potential to decode these spectra in terms of the electronic and atomistic dynamics, the need for large numbers of excited-state electronic structure calculations severely limits first-principles predictions of multidimensional optical spectra for chromophores in the condensed phase. Here, we leverage the locality of chromophore excitations to develop machine learning models to predict the excited-state energy gap of chromophores in complex environments for efficiently constructing linear and multidimensional optical spectra. By analyzing the performance of these models, which span a hierarchy of physical approximations, across a range of chromophore-environment interaction strengths, we provide strategies for the construction of machine learning models that greatly accelerate the calculation of multidimensional optical spectra from first principles.

12.
J Vis Exp ; (159)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32538916

RESUMO

Rational design of disordered molecular aggregates and solids for optoelectronic applications relies on our ability to predict the properties of such materials using theoretical and computational methods. However, large molecular systems where disorder is too significant to be considered in the perturbative limit cannot be described using either first principles quantum chemistry or band theory. Multiscale modeling is a promising approach to understanding and optimizing the optoelectronic properties of such systems. It uses first-principles quantum chemical methods to calculate the properties of individual molecules, then constructs model Hamiltonians of molecular aggregates or bulk materials based on these calculations. In this paper, we present a protocol for constructing a tight-binding Hamiltonian that represents the excited states of a molecular material in the basis of Frenckel excitons: electron-hole pairs that are localized on individual molecules that make up the material. The Hamiltonian parametrization proposed here accounts for excitonic couplings between molecules, as well as for electrostatic polarization of the electron density on a molecule by the charge distribution on surrounding molecules. Such model Hamiltonians can be used to calculate optical absorption spectra and other optoelectronic properties of molecular aggregates and solids.


Assuntos
Eletroquímica , Modelos Químicos , Análise Espectral , Fenômenos Biomecânicos , Elétrons , Transição de Fase
13.
Science ; 368(6495): 1056-1057, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32499427
14.
Phys Chem Chem Phys ; 22(10): 5584-5596, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32107511

RESUMO

The identity of metal ions surrounding DNA is key to its biological function and materials applications. In this work, we compare atomistic molecular dynamics simulations of double strand DNA (dsDNA) with four alkaline earth metal ions (Mg2+, Ca2+, Sr2+, and Ba2+) to elucidate the physical interactions that govern DNA-ion binding. Simulations accurately model the ion-phosphate distance of Mg2+ and reproduce ion counting experiments for Ca2+, Sr2+, and Ba2+. Our analysis shows that alkaline earth metal ions prefer to bind at the phosphate backbone compared to the major groove and negligible binding occurs in the minor groove. Larger alkaline earth metal ions with variable first solvation shells (Ca2+, Sr2+, and Ba2+) show both direct and indirect binding, where indirect binding increases with ion size. Mg2+ does not fit this trend because the strength of its first solvation shell predicts indirect binding only. Ions bound to the phosphate backbone form fewer contacts per ion compared to the major groove. Within the major groove, metal ions preferentially bind to guanine-cystosine base pairs and form simultaneous contacts with the N7 and O6 atoms of guanine. Overall, we find that the interplay among ion size, DNA-ion interaction, and the size and flexibility of the first solvation shell are key to predicting how alkaline earth metal ions interact with DNA.


Assuntos
DNA/química , Íons/química , Metais Alcalinoterrosos/química , Metais/química , Simulação de Dinâmica Molecular , Água/química
15.
J Phys Chem B ; 124(3): 531-543, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31880454

RESUMO

Accurate spectral densities are necessary for computing realistic exciton dynamics and nonlinear optical spectra of chromophores in condensed-phase environments, including multichromophore pigment-protein systems. However, due to the significant computational cost of computing spectral densities from first principles, requiring many thousands of excited-state calculations, most simulations of realistic systems rely on treating the environment as fixed-point charges. Here, using a number of representative systems ranging from solvated chromophores to the photoactive yellow protein (PYP), we demonstrate that the quantum mechanical (QM) electronic polarization of the environment is key to obtaining accurate spectral densities and line shapes within the cumulant framework. We show that the QM environment can enhance or depress the coupling of fast chromophore degrees of freedom to the energy gap, altering the electronic-vibrational coupling and the resulting vibronic progressions in the absorption spectrum. In analyzing the physical origin of peaks in the spectral density, we identify vibrational modes that couple the electron and the hole as being particularly sensitive to the QM screening of the environment. For PYP, we reveal the need for careful determination of the appropriate QM region to obtain reliable spectral densities. Our results indicate that the QM polarization of the environment can be crucial not just for excitation energies but also for electronic-vibrational coupling in complex systems with implications for the correct modeling of linear and nonlinear optical spectroscopy in the condensed phase as well as energy transfer in pigment-protein complexes.


Assuntos
Proteínas de Bactérias/química , Corantes/química , Fotorreceptores Microbianos/química , Eletricidade Estática , Ácidos Cumáricos/química , Elétrons , Imidazolinas/química , Oxazinas/química , Teoria Quântica , Espectrofotometria , Tiofenos/química , Vibração
16.
J Chem Phys ; 151(7): 074111, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438704

RESUMO

Simulating optical spectra in the condensed phase remains a challenge for theory due to the need to capture spectral signatures arising from anharmonicity and dynamical effects, such as vibronic progressions and asymmetry. As such, numerous simulation methods have been developed that invoke different approximations and vary in their ability to capture different physical regimes. Here, we use several models of chromophores in the condensed phase and ab initio molecular dynamics simulations to rigorously assess the applicability of methods to simulate optical absorption spectra. Specifically, we focus on the ensemble scheme, which can address anharmonic potential energy surfaces but relies on the applicability of extreme nuclear-electronic time scale separation; the Franck-Condon method, which includes dynamical effects but generally only at the harmonic level; and the recently introduced ensemble zero-temperature Franck-Condon approach, which straddles these limits. We also devote particular attention to the performance of methods derived from a cumulant expansion of the energy gap fluctuations and test the ability to approximate the requisite time correlation functions using classical dynamics with quantum correction factors. These results provide insights as to when these methods are applicable and able to capture the features of condensed phase spectra qualitatively and, in some cases, quantitatively across a range of regimes.

17.
J Phys Chem A ; 123(29): 6175-6184, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31194554

RESUMO

In the condensed phase, ions often create heterogeneous local environments around a solute, which may impart chemical reactivity or perturbations to physicochemical properties. Although the former has been the subject of some study, the latter-particularly as is pertains to optical absorption spectroscopy-is much less understood. In this work, the computed UV-vis absorption spectrum is examined for the aqueously solvated chromophore anion of green fluorescent protein for different local ion configurations. The strong ability of water to screen the ions from the chromophore results in little change in excitation energy compared to a purely aqueous environment. However, upon forming a contact ion pair with a sodium ion at either of the two electronegative oxygen sites of the chromophore, there is a spectral shift to either higher or lower energies. Surprisingly, our analysis suggests that the cause of the spectral shift is dominated not by the electrostatic presence of the ion but instead by ion disruption of the hydrogen bond network at the oxygen contact ion pair site.

18.
J Chem Phys ; 149(2): 024107, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30007372

RESUMO

Many physical phenomena must be accounted for to accurately model solution-phase optical spectral line shapes, from the sampling of chromophore-solvent configurations to the electronic-vibrational transitions leading to vibronic fine structure. Here we thoroughly explore the role of nuclear quantum effects, direct and indirect solvent effects, and vibronic effects in the computation of the optical spectrum of the aqueously solvated anionic chromophores of green fluorescent protein and photoactive yellow protein. By analyzing the chromophore and solvent configurations, the distributions of vertical excitation energies, the absorption spectra computed within the ensemble approach, and the absorption spectra computed within the ensemble plus zero-temperature Franck-Condon approach, we show how solvent, nuclear quantum effects, and vibronic transitions alter the optical absorption spectra. We find that including nuclear quantum effects in the sampling of chromophore-solvent configurations using ab initio path integral molecular dynamics simulations leads to improved spectral shapes through three mechanisms. The three mechanisms that lead to line shape broadening and a better description of the high-energy tail are softening of heavy atom bonds in the chromophore that couple to the optically bright state, widening the distribution of vertical excitation energies from more diverse solvation environments, and redistributing spectral weight from the 0-0 vibronic transition to higher energy vibronic transitions when computing the Franck-Condon spectrum in a frozen solvent pocket. The absorption spectra computed using the combined ensemble plus zero-temperature Franck-Condon approach yield significant improvements in spectral shape and width compared to the spectra computed with the ensemble approach. Using the combined approach with configurations sampled from path integral molecular dynamics trajectories presents a significant step forward in accurately modeling the absorption spectra of aqueously solvated chromophores.


Assuntos
Proteínas de Bactérias/química , Ácidos Cumáricos/química , Proteínas de Fluorescência Verde/química , Imidazolidinas/química , Fotorreceptores Microbianos/química , Solventes/química , Água/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Teoria Quântica , Vibração
19.
J Phys Chem B ; 121(43): 10105-10117, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28992689

RESUMO

A promising approach for accurately modeling both short-range and long-range solvation effects is to combine explicit quantum mechanical (QM) solvent with a classical polarizable continuum model (PCM), but the best PCM for these combined QM/classical calculations is relatively unexplored. We find that the choice of the solvation cavity is very important for obtaining physically correct results since unphysical double counting of solvation effects from both the QM solvent and the classical dielectric can occur with a poor choice of cavity. We investigate the dependence of electronic excitation energies on the definition of the PCM cavity and the self-consistent reaction field method, comparing results to large-scale explicit QM solvent calculations. For excitation energies, we identify the difference between the ground and excited state dipole moments as the key property determining the sensitivity to the PCM cavity. Using a linear response PCM approach combined with QM solvent, we show that excitation energies are best modeled by a solvent excluded surface or a scaled van der Waals surface. For the aqueous solutes studied here, we find that a scaled van der Waals surface defined by universal force field radii scaled by a factor of 1.5 gives reasonable excitation energies. When using an external iteration state-specific PCM approach, however, the excitation energies are most accurate with a larger PCM cavity, such as a solvent accessible surface.

20.
J Chem Theory Comput ; 13(8): 3787-3801, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28686841

RESUMO

Optimizing the optical properties of large chromophore aggregates and molecular solids for applications in photovoltaics and nonlinear optics is an outstanding challenge. It requires efficient and reliable computational models that must be validated against accurate theoretical methods. We show that linear absorption spectra calculated using the molecular exciton model agree well with spectra calculated using time-dependent density functional theory and configuration interaction singles for aggregates of strongly polar chromophores. Similar agreement is obtained for a hybrid functional (B3LYP), a long-range corrected hybrid functional (ωB97X), and configuration interaction singles. Accounting for the electrostatic environment of individual chromophores in the parametrization of the exciton model with the inclusion of atomic point charges significantly improves the agreement of the resulting spectra with those calculated using all-electron methods; different charge definitions (Mulliken and ChelpG) yield similar results. We find that there is a size-dependent error in the exciton model compared with all-electron methods, but for aggregates with more than six chromophores, the errors change slowly with the number of chromophores in the aggregate. Our results validate the use of the molecular exciton model for predicting the absorption spectra of bulk molecular solids; its formalism also allows straightforward extension to calculations of nonlinear optical response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA