Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 22(1): 363, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238210

RESUMO

BACKGROUND: Gene regulatory networks coordinate the expression of genes across physiological states and ensure a synchronized expression of genes in cellular subsystems, critical for the coherent functioning of cells. Here we address the question whether it is possible to predict gene synchronization from network structure alone. We have recently shown that synchronized gene expression can be predicted from symmetries in the gene regulatory networks described by the concept of symmetry fibrations. We showed that symmetry fibrations partition the genes into groups called fibers based on the symmetries of their 'input trees', the set of paths in the network through which signals can reach a gene. In idealized dynamic gene expression models, all genes in a fiber are perfectly synchronized, while less idealized models-with gene input functions differencing between genes-predict symmetry breaking and desynchronization. RESULTS: To study the functional role of gene fibers and to test whether some of the fiber-induced coexpression remains in reality, we analyze gene fibrations for the gene regulatory networks of E. coli and B. subtilis and confront them with expression data. We find approximate gene coexpression patterns consistent with symmetry fibrations with idealized gene expression dynamics. This shows that network structure alone provides useful information about gene synchronization, and suggest that gene input functions within fibers may be further streamlined by evolutionary pressures to realize a coexpression of genes. CONCLUSIONS: Thus, gene fibrations provide a sound conceptual tool to describe tunable coexpression induced by network topology and shaped by mechanistic details of gene expression.


Assuntos
Escherichia coli , Redes Reguladoras de Genes , Escherichia coli/genética , Expressão Gênica , Fenótipo
2.
Noncoding RNA ; 4(3)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227648

RESUMO

Cardiovascular disease (CVD) is a significant cause of morbidity and mortality across the world. A large proportion of CVD deaths are secondary to coronary artery disease (CAD) and myocardial infarction (MI). Even though prevention is the best strategy to reduce risk factors associated with MI, the use of cardioprotective interventions aimed at improving patient outcomes is of great interest. Opioid conditioning has been shown to be effective in reducing myocardial ischemia-reperfusion injury (IRI) and cardiomyocyte death. However, the molecular mechanisms behind these effects are under investigation and could provide the basis for the development of novel therapeutic approaches in the treatment of CVD. Non-coding RNAs (ncRNAs), which are functional RNA molecules that do not translate into proteins, are critical modulators of cardiac gene expression during heart development and disease. Moreover, ncRNAs such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are known to be induced by opioid receptor activation and regulate opioid signaling pathways. Recent advances in experimental and computational tools have accelerated the discovery and functional characterization of ncRNAs. In this study, we review the current understanding of the role of ncRNAs in opioid signaling and opioid-induced cardioprotection.

3.
Front Microbiol ; 8: 1466, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824593

RESUMO

In the face of changes in their environment, bacteria adjust gene expression levels and produce appropriate responses. The individual layers of this process have been widely studied: the transcriptional regulatory network describes the regulatory interactions that produce changes in the metabolic network, both of which are coordinated by the signaling network, but the interplay between them has never been described in a systematic fashion. Here, we formalize the process of detection and processing of environmental information mediated by individual transcription factors (TFs), utilizing a concept termed genetic sensory response units (GENSOR units), which are composed of four components: (1) a signal, (2) signal transduction, (3) genetic switch, and (4) a response. We used experimentally validated data sets from two databases to assemble a GENSOR unit for each of the 189 local TFs of Escherichia coli K-12 contained in the RegulonDB database. Further analysis suggested that feedback is a common occurrence in signal processing, and there is a gradient of functional complexity in the response mediated by each TF, as opposed to a one regulator/one pathway rule. Finally, we provide examples of other GENSOR unit applications, such as hypothesis generation, detailed description of cellular decision making, and elucidation of indirect regulatory mechanisms.

4.
Biochimie ; 94(6): 1262-73, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22365985

RESUMO

Lysogenic Escherichia coli K-12 harbouring the prophage mEp021 displays haemolytic activity. From a genomic library of mEp021, we identified an open reading frame (ORF 4) that was responsible for the haemolytic activity. However, the ORF 4 sequence contains four initiation codons in the same frame: ORF 4.1-ORF 4.4, coding for 83-a.a., 82-a.a., 77-a.a. and 72-a.a. products, respectively. The expression of the cloned ORF 4.3, or inducer of pleiotropic effects (ipe), reproduced the haemolytic phenotype in a native strain carrying the gene hlyE(+), but not in the mutant hlyE(-) strain. The overexpression of Ipe induced several pleiotropic effects, such as the inhibition of cell growth and the deregulation of cell division, which resulted in a mixture of normal and desiccated-like cells: normal-filamentous, desiccated-like-filamentous bacilli, minicells etc. Other effects included abnormalities of the cell membrane, the production of vesicles containing HlyE, and finally, cell death. These events were analysed at the molecular level by microarray assays. The global transcription profile of E. coli K-12 strain MC4100, which expressed Ipe after 4 h, revealed differential expression of various genes, most of which were related either to cell membrane and murein biosynthesis or to cell division. The up-regulation of some of these transcripts was confirmed by qRT-PCR. Additional research is needed to determine whether these effects are directly related to Ipe activity or are consequences of the cellular responses to putative structural damage induced by Ipe.


Assuntos
Colífagos/genética , Proteínas de Escherichia coli/genética , Proteínas Hemolisinas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Divisão Celular/genética , Escherichia coli K12/genética , Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/fisiologia , Proteínas Hemolisinas/fisiologia , Hemólise/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Ovinos/sangue , Regulação para Cima
5.
Biochem Biophys Res Commun ; 348(3): 989-96, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16904075

RESUMO

Analysis of the UGA3-GLT1 bidirectional promoter has indicated that its transcriptional activation is determined by the combined action of Gcn4p and Gln3p, and that its bidirectional character is influenced by chromatin organization, through the action of an Abf1p binding site and a polydAdTtract. Results presented in this paper show that lack of Gcn5p impairs histone acetylation and nucleosomal organization of the UGA3-GLT1 promoter, resulting in an asymmetrical transcriptional activation response of UGA3 and GLT1. The phenotype displayed by a double mutant impaired in GCN5 and in the Abf1p binding site indicates that the combined action of these two elements determines the bidirectional capacity of the UGA3-GLT1 intergenic region.


Assuntos
Proteínas de Ligação a DNA/genética , Transportador 2 de Aminoácido Excitatório/genética , Histona Acetiltransferases/fisiologia , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Acetilação , Sítios de Ligação/genética , DNA Intergênico/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
6.
Mol Microbiol ; 59(6): 1790-806, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16553884

RESUMO

Transcription of an important number of divergent genes of Saccharomyces cerevisiae is controlled by intergenic regions, which constitute factual bidirectional promoters. However, few of such promoters have been characterized in detail. The analysis of the UGA3-GLT1 intergenic region has provided an interesting model to study the joint action of two global transcriptional activators that had been considered to act independently. Our results show that Gln3p and Gcn4p exert their effect upon cis-acting elements, which are shared in a bidirectional promoter. Accordingly, when yeast is grown on a low-quality nitrogen source, or under amino acid deprivation, the expression of both UGA3 and GLT1 is induced through the action of both these global transcriptional modulators that bind to a region of the bidirectional promoter. In addition, we demonstrate that chromatin organization plays a major role in the bidirectional properties of the UGA3-GLT1 promoter, through the action of an upstream Abf1p-binding consensus sequence and a polydAdT(tract). Mutations in these cis-elements differentially affect transcription of UGA3 and GLT1, and thus alter the overall relative expression. This is the first example of an intergenic region constituting a promoter whose bidirectional character is determined by chromatin organization.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Glutamato Sintase (NADH)/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica , Cromatina/química , Sequência Consenso , DNA Intergênico/genética , Dados de Sequência Molecular , Nitrogênio/metabolismo , Mutação Puntual , Poli dA-dT/metabolismo , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico , Saccharomyces cerevisiae/metabolismo
7.
Mol Microbiol ; 57(1): 291-305, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15948967

RESUMO

It is accepted that Saccharomyces cerevisiae genome arose from complete duplication of eight ancestral chromosomes; functionally normal ploidy was recovered because of the massive loss of 90% of duplicated genes. There is evidence that indicates that part of this selective conservation of gene pairs is compelling to yeast facultative metabolism. As an example, the duplicated NADP-glutamate dehydrogenase pathway has been maintained because of the differential expression of the paralogous GDH1 and GDH3 genes, and the biochemical specialization of the enzymes they encode. The present work has been aimed to the understanding of the regulatory mechanisms that modulate GDH3 transcriptional activation. Our results show that GDH3 expression is repressed in glucose-grown cultures, as opposed to what has been observed for GDH1, and induced under respiratory conditions, or under stationary phase. Although GDH3 pertains to the nitrogen metabolic network, and its expression is Gln3p-regulated, complete derepression is ultimately determined by the carbon source through the action of the SAGA and SWI/SNF chromatin remodelling complexes. GDH3 carbon-mediated regulation is over-imposed to that exerted by the nitrogen source, highlighting the fact that operation of facultative metabolism requires strict control of enzymes, like Gdh3p, involved in biosynthetic pathways that use tricarboxylic acid cycle intermediates.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Desidrogenase de Glutamato (NADP+)/genética , Ácido Glutâmico/metabolismo , Proteínas Quinases/metabolismo , Compostos de Amônio Quaternário/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases , Sequência de Bases , Meios de Cultura , Proteínas de Ligação a DNA/genética , Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Desidrogenase de Glutamato (NADP+)/metabolismo , Histona Acetiltransferases , Dados de Sequência Molecular , Proteínas Quinases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA