Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Leuk Res ; 138: 107454, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38452534

RESUMO

Adult T-cell leukemia/lymphoma (ATL), caused by human T-cell leukemia virus type-1 (HTLV-1) infection, is a malignant hematologic cancer that remains difficult to cure. We herein established a biomarker identification strategy based on the total cell proteomics of cultured ATL cells to search for novel ATL biomarkers. Four protocols with a combination of selected conditions based on lysis buffers and addition agents for total cell proteomics were used for a differential analysis between the ATL cell group (consisting of 11 cell lines), HTLV-1-infected cell group (consisting of 6 cell lines), and HTLV-1-negative cell group (consisting of 6 cell lines). In the analysis, we identified 24 and 27 proteins that were significantly increased (ratio ≥2.0, p < 0.05) and decreased (ratio ≤ 0.5, p < 0.05), respectively, in the ATL group. Previously reported CCL3 and CD30/TNFRSF8 were confirmed to be among significantly increased proteins. Furthermore, correlation analysis between identified proteins and Tax suggested that RASSF2 and GORASP2 were candidates of novel Tax-regulated factors. The biomarker identification strategy established herein is expected to contribute to the identification of biomarkers for ATL and other diseases.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Linfoma , Adulto , Humanos , Proteômica , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Biomarcadores , Digestão , Produtos do Gene tax/metabolismo , Proteínas da Matriz do Complexo de Golgi
2.
Antioxidants (Basel) ; 11(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36552694

RESUMO

Peroxiredoxin (Prx) 2 in red blood cells (RBCs) reacts with various reactive oxygen species and changes to hyperoxidized Prx2 (Prx2-SO2/3). Therefore, Prx2 may serve as an indicator of oxidative stress in vivo. This study aimed to analyze Prx2-SO2/3 levels in clinical samples to examine whether the oxidation state of Prx2 in human RBCs reflects the pathological condition of oxidative stress diseases. We first focused on obstructive sleep apnea (OSA), a hypoxic stress-induced disease of the respiratory system, and investigated the levels of Prx2-SO2/3 accumulated in the RBCs of OSA patients. In measurements on a small number of OSA patients and healthy subjects, levels of Prx2-SO2/3 accumulation in patients with OSA were clearly increased compared to those in healthy subjects. Hence, we proceeded to validate these findings with more samples collected from patients with OSA. The results revealed significantly higher levels of erythrocytic Prx2-SO2/3 in patients with OSA than in healthy subjects, as well as a positive correlation between the severity of OSA and Prx2-SO2/3 levels in the RBCs. Moreover, we performed a chromatographic study to show the structural changes of Prx2 due to hyperoxidation. Our findings demonstrated that the Prx2-SO2/3 molecules in RBCs from patients with OSA were considerably more hydrophilic than the reduced form of Prx2. These results implicate Prx2-SO2/3 as a promising candidate biomarker for OSA.

3.
Microbiol Spectr ; 9(3): e0056021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34851163

RESUMO

Serological tests are beneficial for recognizing the immune response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To identify protective immunity, optimization of the chemiluminescent reduction neutralizing test (CRNT) is critical. Whether commercial antibody tests have comparable accuracy is unknown. Serum samples were obtained from COVID-19 patients (n = 74), SARS-CoV-2 PCR-negative (n = 179), and suspected healthy individuals (n = 229) before SARS-CoV-2 variants had been detected locally. The convalescent phase was defined as the period after day 10 from disease onset or the episode of close contact. The CRNT using pseudotyped viruses displaying the wild-type (WT) spike protein and a commercial anti-receptor-binding domain (RBD) antibody test were assayed. Serology for the B.1.1.7 and B.1.351 variants was also assayed. Both tests concurred for symptomatic COVID-19 patients in the convalescent phase. They clearly differentiated between patients and suspected healthy individuals (sensitivity: 95.8% and 100%, respectively; specificity: 99.1% and 100%, respectively). Anti-RBD antibody test results correlated with neutralizing titers (r = 0.31, 95% confidence interval [CI] 0.22-0.38). Compared with the WT, lower CRNT values were observed for the variants. Of the samples with ≥100 U/mL by the anti-RBD antibody test, 77.8% and 88.9% showed ≥50% neutralization against the B.1.1.7 and the B.1.351 variants, respectively. Exceeding 100 U/mL in the anti-RBD antibody test was associated with neutralization of variants (P < 0.01). The CRNT and commercial anti-RBD antibody test effectively classified convalescent COVID-19 patients. Strong positive results with the anti-RBD antibody test can reflect neutralizing activity against emerging variants. IMPORTANCE This study provides a diagnostic evidence of test validity, which can lead to vaccine efficacy and proof of recovery after COVID-19. It is not easy to know neutralization against SARS-CoV-2 in the clinical laboratory because of technical and biohazard issues. The correlation of the quantitative anti-receptor-binding domain antibody test, which is widely available, with neutralizing test indicates that we can know indirectly the state of acquisition of functional immunity against wild and variant-type viruses in the clinical laboratory.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/imunologia , Testes de Neutralização/métodos , Ligação Proteica/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/classificação , Eficácia de Vacinas , Pseudotipagem Viral , Adulto Jovem
4.
Antioxidants (Basel) ; 10(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917901

RESUMO

Recent studies have shown that carbonyl stress is a causative factor of schizophrenia, categorized as carbonyl stress-related schizophrenia (CS-SCZ). However, the correlation between carbonyl stress and the pathogenesis of this disease is not well established. In this study, glyoxalase 1(Glo1)-knockout and vitamin B6-deficient mice (KO/VB6 (-) mice), which are susceptible to methylglyoxal (MGO)-induced oxidative damages, were used as a CS-SCZ model to analyze MGO-modified protein and the carbonyl stress status in the brain. A comparison between Wild/VB6(+) mice and KO/VB6(-) mice for accumulated carbonyl proteins levels, with several advanced glycation end products (AGEs) in the brain, revealed that carbonyl protein levels with the Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl) ornithine (MG-H1) moiety were significantly increased in the hippocampus, prefrontal cortex, striatum, cerebral cortex, and brainstem regions of the brain in KO/VB6(-) mice. Moreover, two-dimensional electrophoresis and Liquid chromatography-tandem mass spectrometry analysis showed MG-H1-modified arginine residues in mitochondrial creatine kinase, beta-adrenergic receptor kinase 1, and T-complex protein in the hippocampus region of KO/VB6(-) mice, but not in Wild/VB6(+) mice. In particular, MG-H1 modification of mitochondrial creatine kinase was quite notable. These results suggest that further studies focusing on MG-H1-modified and accumulated proteins in the hippocampus may reveal the onset mechanism of CS-SCZ induced by MGO-induced oxidative damages.

5.
Int J Biochem Cell Biol ; 132: 105919, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422691

RESUMO

The AAA-ATPase NVL2 associates with an RNA helicase MTR4 and the nuclear RNA exosome in the course of ribosome biogenesis. In our proteomic screen, we had identified a ribosome biogenesis factor WDR74 as a MTR4-interacting partner, whose dissociation is stimulated by the ATP hydrolysis of NVL2. In this study, we report the identification of splicing factor 30 (SPF30), another MTR4-interacting protein with a similar regulatory mechanism. SPF30 is a pre-mRNA splicing factor harboring a Tudor domain in its central region, which regulates various cellular events by binding to dimethylarginine-modified proteins. The interaction between SPF30 and the exosome core is mediated by MTR4 and RRP6, a catalytic component of the nuclear exosome. The N- and C-terminal regions, but not the Tudor domain, of SPF30 are involved in the association with MTR4 and the exosome. The knockdown of SPF30 caused subtle delay in the 12S pre-rRNA processing to mature 5.8S rRNA, even though no obvious effect was observed on the ribosome subunit profile in the cells. Shotgun proteomic analysis to search for SPF30-interacting proteins indicated its role in ribosome biogenesis, pre-mRNA splicing, and box C/D snoRNA biogenesis. These results suggest that SPF30 collaborates with the MTR4-exosome machinery to play a functional role in multiple RNA metabolic pathways, some of which may be regulated by the ATP hydrolysis of NVL2.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Exossomos/genética , RNA Helicases/metabolismo , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , Estabilidade de RNA , Proteínas do Complexo SMN/química , Proteínas do Complexo SMN/metabolismo , Humanos , Ligação Proteica , Domínios Proteicos
7.
Biochem Biophys Res Commun ; 518(4): 685-690, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31472963

RESUMO

Peroxiredoxins (Prxs) detoxify hydrogen peroxide (H2O2), peroxynitrite, and various organic hydroperoxides. However, the differential oxidative status of Prxs reacted with each peroxide remains unclear. In the present study, we focused on the oxidative alteration of Prxs and demonstrated that, in human red blood cells (RBCs), peroxiredoxin 2 (Prx2) is readily reactive with H2O2, forming disulfide dimers, but was not easily hyperoxidized. In contrast, Prx2 was highly sensitive to the relatively hydrophobic oxidants, such as tert-butyl hydroperoxide (t-BHP) and cumene hydroperoxide. These peroxides hyperoxidized Prx2 into oxidatively damaged forms in RBCs. The t-BHP treatment formed hyperoxidized Prx2 in a dose-dependent manner. When organic hydroperoxide-treated RBC lysates were subjected to reverse-phase high performance liquid chromatography, two peaks derived from hyperoxidized Prx2 appeared along with the decrease of that corresponding to native Prx2. Liquid chromatography-tandem mass spectrometry analysis clearly showed that hyperoxidation to sulfonic acid (-SO3H) at Cys-51 residue was more advanced in a newfound hyperoxidized Prx2 compared to another hydrophobic hyperoxidized form previously identified. These results indicate that irreversible hyperoxidation of the Prx2 monomer in RBCs was easily caused by organic hydroperoxide but not H2O2. Thus, it is important to detect the hyperoxidation of Prx2 into sulfinic or sulfonic acid derivates of Cys-51 because hyperoxidized Prx2 is a potential marker of oxidative injury caused by organic hydroperoxides in human RBCs.


Assuntos
Eritrócitos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxidos/metabolismo , Peroxirredoxinas/metabolismo , Adulto , Cromatografia de Fase Reversa , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Humanos , Peróxido de Hidrogênio/química , Pessoa de Meia-Idade , Oxidantes/química , Oxidantes/metabolismo , Oxirredução , Peróxidos/química , Peroxirredoxinas/química , Ácidos Sulfínicos/química , Ácidos Sulfínicos/metabolismo , Ácidos Sulfônicos/química , Ácidos Sulfônicos/metabolismo , Adulto Jovem , terc-Butil Hidroperóxido/química , terc-Butil Hidroperóxido/metabolismo
8.
Med Mycol J ; 59(3): E47-E52, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-30175812

RESUMO

Interactions between virulence factors of pathogens and host responses play an important role in the establishment of infection by microbes. We focused on interactions between Cryptococcus neoformans proteins and heparin, which is abundant on host epithelial cells. Surface proteins were extracted and analyzed. Fractions from anion-exchange column chromatography interacted with heparin in surface plasmon resonance analyses. Heparin-binding proteins were purified and then separated by gel electrophoresis; and were identified as transaldolase, glutathione-disulfide reductase, and glyoxal oxidase. These results imply that multifunctional molecules on C. neoformans cells, such as those involved in heparin binding, may play roles in adhesion that trigger responses in the host.


Assuntos
Oxirredutases do Álcool/isolamento & purificação , Oxirredutases do Álcool/metabolismo , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Cryptococcus neoformans/citologia , Cryptococcus neoformans/metabolismo , Glutationa Redutase/isolamento & purificação , Glutationa Redutase/metabolismo , Heparina/metabolismo , Transaldolase/isolamento & purificação , Transaldolase/metabolismo , Fatores de Virulência/isolamento & purificação , Fatores de Virulência/metabolismo , Cryptococcus neoformans/patogenicidade , Ligação Proteica
9.
Gan To Kagaku Ryoho ; 45(7): 1071-1074, 2018 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-30042275

RESUMO

An increasing number of patients with lung cancer are undergoing outpatient chemotherapy, and thus, it is very important to maintain the quality of life(QOL)of these patients. Ninjin-Youei-To(TJ-108), a Japanese traditional medicine, has been reported to improve the QOL of patients with advanced cancer. However, the effect of TJ-108 in patients with lung cancer undergoing outpatient chemotherapy is unknown. Therefore, we conducted this study. To investigate factors influencing the QOL of these patients, we administered a QOL questionnaire,"The QOL Questionnaire for Cancer Patients Treated with Anticancer Drugs"(QOL-ACD)to 15 patients with non-small cell lung cancer. Factors related to the overall QOL scores and other categories indicating"activity","physical condition","psychological condition","social relationship", and"face scale" were analyzed. No significant decrease in each of the evaluated factors was observed in this study.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Qualidade de Vida , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Medicina Tradicional , Pessoa de Meia-Idade , Pacientes Ambulatoriais , Inquéritos e Questionários
10.
EMBO J ; 37(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29880601

RESUMO

Cytoplasmic mRNA degradation controls gene expression to help eliminate pathogens during infection. However, it has remained unclear whether such regulation also extends to nuclear RNA decay. Here, we show that 145 unstable nuclear RNAs, including enhancer RNAs (eRNAs) and long noncoding RNAs (lncRNAs) such as NEAT1v2, are stabilized upon Salmonella infection in HeLa cells. In uninfected cells, the RNA exosome, aided by the Nuclear EXosome Targeting (NEXT) complex, degrades these labile transcripts. Upon infection, the levels of the exosome/NEXT components, RRP6 and MTR4, dramatically decrease, resulting in transcript stabilization. Depletion of lncRNAs, NEAT1v2, or eRNA07573 in HeLa cells triggers increased susceptibility to Salmonella infection concomitant with the deregulated expression of a distinct class of immunity-related genes, indicating that the accumulation of unstable nuclear RNAs contributes to antibacterial defense. Our results highlight a fundamental role for regulated degradation of nuclear RNA in the response to pathogenic infection.


Assuntos
RNA Nuclear , RNA não Traduzido , Infecções por Salmonella/genética , Sobrevivência Celular , Células HeLa , Humanos , Salmonella enterica/genética , Regulação para Cima
11.
Biochem Biophys Res Commun ; 495(1): 116-123, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107693

RESUMO

WD repeat-containing protein 74 (WDR74), a nucleolar-localized protein, is the mammalian ortholog of Nsa1, a 60S ribosome assembly factor in yeast. We previously showed that WDR74 associates with MTR4, the nuclear exosome-assisting RNA helicase, whose dissociation is prohibited by an ATPase-deficient mutant of the AAA-type chaperone NVL2. However, the functions and regulation of WDR74 during ribosome biogenesis in cooperation with NVL2 remains unknown. Here, we demonstrated that knockdown of WDR74 leads to significant defects in the pre-rRNA cleavage within the internal transcribed spacer 1 (ITS1), occurring in an early stage of the processing pathway. Interestingly, when the dissociation of WDR74 from the MTR4-containing exonuclease complex was impaired upon expression of the mutant NVL2, the same processing defect, with partial migration of WDR74 from the nucleolus towards the nucleoplasm, was observed. In the nucleoplasm, an increased interaction between WDR74 and MTR4 was detected by in situ proximity ligation assay. Therefore, the dissociation of WDR74 from MTR4 in a late stage of rRNA synthesis is thought to be required for appropriate maturation of the pre-60S particles. These results suggest that the spatiotemporal regulation of ribosome biogenesis in the nucleolus is mediated by the ATPase activity of NVL2.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , Precursores de RNA/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Nucléolo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Transporte Proteico , RNA Helicases/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA , Ribossomos/metabolismo
12.
Hum Cell ; 30(4): 279-289, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28434171

RESUMO

Peroxiredoxin 2 (Prx2) is a redox enzyme that is abundantly expressed in red blood cells (RBCs) and has been the focus of clinical attention for monitoring the oxidative status. We previously developed a method to quantify the reduced and hyperoxidized forms of Prx2 in human RBCs using reverse-phase high-performance liquid chromatography (HPLC). In the present study, we investigated the hyperoxidative status of Prx2 at the molecular level in a post-translational modification analysis using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. The LC-MS/MS analysis of the trypsin digests of Prx2 fractionated by reverse-phase HPLC demonstrated that the cysteine-51 residue (Cys-51) of the protein was modified with the hyperoxidative functional groups, sulfinic acid (-SO2H) and sulfonic acid (-SO3H), in RBCs treated with tert-butyl hydroperoxide (t-BHP). Furthermore, a selected ion monitoring (SIM) analysis quantitatively showed that sulfinic acid- and sulfonic acid-induced modifications in Prx2 Cys-51 were increased by the treatment with the oxidant. It was demonstrated that the peroxidatic cysteine of Prx2 separated using our HPLC system for oxidative monitoring was hyperoxidized into sulfinic acid and sulfonic acid in RBCs under an oxidative stress condition.


Assuntos
Cisteína/metabolismo , Eritrócitos/metabolismo , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Ácidos Sulfínicos/metabolismo , Ácidos Sulfônicos/metabolismo , terc-Butil Hidroperóxido/farmacologia , Adulto , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , Oxirredução , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-27907853

RESUMO

The period between the 1940s and 1960s saw the hardening of the modern synthesis in evolutionary biology. Gould and Provine argue that Wright's shifting balance theory of evolution hardened during this period. But their account does not do justice to Wright, who always regarded selection as acting together with drift. This paper presents a more adequate account of the development of Wright's shifting balance theory, paying particular attention to his application of the theory to the geographical distribution of flower color dimorphism in Linanthus parryae. The account shows that even in the heyday of the hardened synthesis, the balance or interaction of evolutionary factors, such as drift, selection, and migration, occupied pride of place in Wright's theory, and that between the 1940s and 1970s, Wright developed the theory of isolation by distance to quantitatively represent the structure of the Linanthus population, which he argued had the kind of structure posited by his shifting balance theory. In the end, Wright arrived at a sophisticated description of the structure of the Linanthus population, where the interaction between drift and selection varied spatially.


Assuntos
Evolução Biológica , Genética/história , Seleção Genética , História do Século XX , Modelos Genéticos
14.
Bone ; 93: 167-180, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27650914

RESUMO

Bone resorption by osteoclasts occurs through the creation of a sealed extracellular compartment (ECC), or pit, adjacent to the bone that is subsequently acidified through a complex biological process. The low pH of the pit dissolves the bone mineral and activates acid proteases that further break down the bone matrix. There are many ion channels, transporters, and soluble proteins involved in osteoclast mediated resorption, and in the past few years, there has been an increased understanding of the identity and properties of some key proteins such as the ClC-7 Cl-/H+ antiporter and the HV1 proton channel. Here we present a detailed mathematical model of osteoclast acidification that includes the influence of many of the key regulatory proteins. The primary enzyme responsible for acidification is the vacuolar H+-ATPase (V-ATPase), which pumps protons from the cytoplasm into the pit. Unlike the acidification of small lysosomes, the pit is so large that protons become depleted from the cytoplasm. Hence, proton buffering and production in the cytoplasm by carbonic anhydrase II (CAII) is potentially important for proper acidification. We employ an ordinary differential equations (ODE)-based model that accounts for the changes in ionic species in the cytoplasm and the resorptive pit. Additionally, our model tracks ionic flow between the cytoplasm and the extracellular solution surrounding the cell. Whenever possible, the properties of individual channels and transporters are calibrated based on electrophysiological measurements, and physical properties of the cell, such as buffering capacity, surface areas, and volumes, are estimated based on available data. Our model reproduces many of the experimental findings regarding the role of key proteins in the acidification process, and it allows us to estimate, among other things, number of active pumps, protons moved, and the influence of particular mutations implicated in disease.


Assuntos
Ácidos/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Modelos Biológicos , Osteoclastos/metabolismo , Osteoclastos/patologia , Compartimento Celular , Membrana Celular/metabolismo , Canais de Cloreto , Antiportadores de Cloreto-Bicarbonato/metabolismo , Cloretos/farmacologia , Citoplasma/metabolismo , Espaço Extracelular/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/metabolismo , Osteoclastos/efeitos dos fármacos
15.
FEBS Lett ; 590(17): 2963-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27434818

RESUMO

In yeast, the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex acts as a cofactor for the nuclear exosome to promote degradation of various RNAs. However, the corresponding machinery in mammals is less characterized. We analyzed the interactions of the human TRAMP-like proteins, PAPD5, ZCCHC7, and MTR4, with the nuclear exosome. PAPD5 and ZCCHC7 exhibited mutual interactions in presence of the exosome catalytic subunit RRP6, whereas MTR4 was dispensable for their assembly. Furthermore, the human TRAMP-like proteins were involved in the RRP6-catalyzed turnover of pre-rRNA 5'ETS fragments. These results suggest the significant role for RRP6 in the assembly of TRAMP-like proteins during nucleolar RNA surveillance.


Assuntos
RNA Helicases/metabolismo , RNA Nucleotidiltransferases/metabolismo , Estabilidade de RNA/genética , Fatores de Transcrição/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Humanos , RNA Helicases/genética , RNA Nucleotidiltransferases/genética , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
16.
Biochem Biophys Res Commun ; 467(3): 534-40, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26456651

RESUMO

Nuclear VCP-like 2 (NVL2) is a chaperone-like nucleolar ATPase of the AAA (ATPase associated with diverse cellular activities) family, which exhibits a high level of amino acid sequence similarity with the cytosolic AAA-ATPase VCP/p97. These proteins generally act on macromolecular complexes to stimulate energy-dependent release of their constituents. We previously showed that NVL2 interacts with RNA processing/degradation machinery containing an RNA helicase MTR4/DOB1 and an exonuclease complex, nuclear exosome, and involved in the biogenesis of 60S ribosomal subunits. These observations implicate NVL2 as a remodeling factor for the MTR4-exosome complex during the maturation of pre-ribosomal particles. Here, we used a proteomic screen and identified a WD repeat-containing protein 74 (WDR74) as a factor that specifically dissociates from this complex depending on the ATPase activity of NVL2. WDR74 shows weak amino acid sequence similarity with the yeast ribosome biogenesis protein Nsa1 and is co-localized with NVL2 in the nucleolus. Knockdown of WDR74 decreases 60S ribosome levels. Taken together, our results suggest that WDR74 is a novel regulatory protein of the MTR4-exsosome complex whose interaction is regulated by NVL2 and is involved in ribosome biogenesis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Nucléolo Celular/metabolismo , Exossomos/metabolismo , RNA Helicases/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Linhagem Celular , Humanos , Proteínas de Ligação a RNA , Ribossomos/metabolismo
17.
Microsc Microanal ; 21(6): 1373-1378, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26373477

RESUMO

Elemental distributions in a magnetic multilayer system with the structure Si substrate/Ta/NiFe/Ru/CoFeB/Ru/NiFe were studied using atom probe tomography (APT) along different analysis directions. The distributions of Ru and B atoms, which require a high evaporation field, were strongly influenced by the APT analysis direction. In particular, B in the CoFeB layer appeared near the interface with the lower Ru layer when the analysis was anti-parallel to the film growth direction, while B atoms were observed at the other side of the CoFeB layer when the analysis was parallel to the film growth direction. Moreover, when the analysis was perpendicular to the film growth direction, a homogenous distribution of B atoms was found within the CoFeB layer. Owing to this B behavior, the underlying Ru layer was affected in both of these analysis directions. In APT measurements of such a multilayer system composed of a stack of different evaporation field materials, evaluation of the elemental distribution around interfaces should be performed from more than one analysis direction.

18.
Biochem Biophys Res Commun ; 464(3): 780-6, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26166824

RESUMO

Nuclear VCP-like 2 (NVL2) is a member of the chaperone-like AAA-ATPase family and is involved in the biosynthesis of 60S ribosomal subunits in mammalian cells. We previously showed the interaction of NVL2 with a DExD/H-box RNA helicase MTR4/DOB1, which is a known cofactor for an exoribonuclease complex, the exosome. This finding implicated NVL2 in RNA metabolic processes during ribosome biogenesis. In the present study, we found that a series of mutations within the ATPase domain of NVL2 causes a defect in pre-rRNA processing into mature 28S and 5.8S rRNAs. Co-immunoprecipitation analysis showed that NVL2 was associated with the nuclear exosome complex, which includes RRP6 as a nucleus-specific catalytic subunit. This interaction was prevented by depleting either MTR4 or RRP6, indicating their essential role in mediating this interaction with NVL2. Additionally, knockdown of MPP6, another cofactor for the nuclear exosome, also prevented the interaction by causing MTR4 to dissociate from the nuclear exosome. These results suggest that NVL2 is involved in pre-rRNA processing by associating with the nuclear exosome complex and that MPP6 is required for maintaining the integrity of this rRNA processing complex.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Núcleo Celular/metabolismo , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , RNA Helicases/metabolismo , Interferência de RNA , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo
19.
Int J Mol Med ; 35(6): 1511-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25824636

RESUMO

Although recent studies have demonstrated that microRNAs (miRNAs or miRs) regulate fundamental natural killer (NK) cellular processes, including cytotoxicity and cytokine production, little is known about the miRNA-gene regulatory relationships in maternal peripheral blood NK (pNK) cells during pregnancy. In the present study, to determine the roles of miRNAs within gene regulatory networks of maternal pNK cells, we performed comprehensive miRNA and gene expression profiling of maternal pNK cells using a combination of reverse transcription quantitative PCR (RT-qPCR)-based miRNA array and DNA microarray analyses and analyzed the differential expression levels between first- and third-trimester pNK cells. Furthermore, we constructed regulatory networks for miRNA-mediated gene expression in pNK cells during pregnancy by Ingenuity Pathway Analysis (IPA). PCR-based array analysis revealed that the placenta-derived miRNAs [chromosome 19 miRNA cluster (C19MC) miRNAs] were detected in pNK cells during pregnancy. Twenty-five miRNAs, including six C19MC miRNAs, were significantly upregulated in the third- compared to first-trimester pNK cells. The rapid clearance of C19MC miRNAs also occurred in the pNK cells following delivery. Nine miRNAs, including eight C19MC miRNAs, were significantly downregulated in the post-delivery pNK cells compared to those of the third-trimester. DNA microarray analysis identified 69 NK cell function-related genes that were differentially expressed between the first- and third-trimester pNK cells. On pathway and network analysis, the observed gene expression changes of pNK cells likely contribute to the increase in the cytotoxicity, as well as the cell cycle progression of third- compared to first-trimester pNK cells. Thirteen of the 69 NK cell function-related genes were significantly downregulated between the first- and third-trimester pNK cells. Nine of the 13 downregulated NK-function-associated genes were in silico target candidates of 12 upregulated miRNAs, including C19MC miRNA miR-512-3p. The results of this study suggest that the transfer of placental C19MC miRNAs into maternal pNK cells occurs during pregnancy. The present study provides new insight into maternal NK cell functions.


Assuntos
Células Matadoras Naturais/metabolismo , MicroRNAs/sangue , Parto/sangue , Placenta/metabolismo , Terceiro Trimestre da Gravidez/sangue , Gravidez/sangue , Adulto , Feminino , Humanos
20.
World J Hepatol ; 6(12): 870-9, 2014 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-25544874

RESUMO

Hepatitis C virus (HCV) is a major cause of viral hepatitis and currently infects approximately 170 million people worldwide. An infection by HCV causes high rates of chronic hepatitis (> 75%) and progresses to liver cirrhosis and hepatocellular carcinoma ultimately. HCV can be eliminated by a combination of pegylated α-interferon and the broad-spectrum antiviral drug ribavirin; however, this treatment is still associated with poor efficacy and tolerability and is often accompanied by serious side-effects. While some novel direct-acting antivirals against HCV have been developed recently, high medical costs limit the access to the therapy in cost-sensitive countries. To search for new natural anti-HCV agents, we screened local agricultural products for their suppressive activities against HCV replication using the HCV replicon cell system in vitro. We found a potent inhibitor of HCV RNA expression in the extracts of blueberry leaves and then identified oligomeric proanthocyanidin as the active ingredient. Further investigations into the action mechanism of oligomeric proanthocyanidin suggested that it is an inhibitor of heterogeneous nuclear ribonucleoproteins (hnRNPs) such as hnRNP A2/B1. In this review, we presented an overview of functional foods and ingredients efficient for HCV infection, the chemical structural characteristics of oligomeric proanthocyanidin, and its action mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA