Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365227

RESUMO

Tailocins are headless phage tail structures that mediate interbacterial antagonism. Although the prototypical tailocins, R- and F-pyocins, in Pseudomonas aeruginosa, and other predominantly R-type tailocins have been studied, their presence in Alphaproteobacteria remains unexplored. Here, we report the first alphaproteobacterial F-type tailocin, named rhizoviticin, as a determinant of the biocontrol activity of Allorhizobium vitis VAR03-1 against crown gall. Rhizoviticin is encoded by a chimeric prophage genome, one providing transcriptional regulators and the other contributing to tail formation and cell lysis, but lacking head formation genes. The rhizoviticin genome retains a nearly intact early phage region containing an integrase remnant and replication-related genes critical for downstream gene transcription, suggesting an ongoing transition of this locus from a prophage to a tailocin-coding region. Rhizoviticin is responsible for the most antagonistic activity in VAR03-1 culture supernatant against pathogenic A. vitis strain, and rhizoviticin deficiency resulted in a significant reduction in the antitumorigenic activity in planta. We identified the rhizoviticin-coding locus in eight additional A. vitis strains from diverse geographical locations, highlighting a unique survival strategy of certain Rhizobiales bacteria in the rhizosphere. These findings advance our understanding of the evolutionary dynamics of tailocins and provide a scientific foundation for employing rhizoviticin-producing strains in plant disease control.


Assuntos
Bacteriófagos , Vitis , Tumores de Planta/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Pseudomonas aeruginosa , Bacteriófagos/genética , Vitis/microbiologia
2.
New Phytol ; 242(1): 170-191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348532

RESUMO

Plants activate immunity upon recognition of pathogen-associated molecular patterns. Although phytopathogens have evolved a set of effector proteins to counteract plant immunity, some effectors are perceived by hosts and induce immune responses. Here, we show that two secreted ribonuclease effectors, SRN1 and SRN2, encoded in a phytopathogenic fungus, Colletotrichum orbiculare, induce cell death in a signal peptide- and catalytic residue-dependent manner, when transiently expressed in Nicotiana benthamiana. The pervasive presence of SRN genes across Colletotrichum species suggested the conserved roles. Using a transient gene expression system in cucumber (Cucumis sativus), an original host of C. orbiculare, we show that SRN1 and SRN2 potentiate host pattern-triggered immunity responses. Consistent with this, C. orbiculare SRN1 and SRN2 deletion mutants exhibited increased virulence on the host. In vitro analysis revealed that SRN1 specifically cleaves single-stranded RNAs at guanosine, leaving a 3'-end phosphate. Importantly, the potentiation of C. sativus responses by SRN1 and SRN2, present in the apoplast, depends on ribonuclease catalytic residues. We propose that the pathogen-derived apoplastic guanosine-specific single-stranded endoribonucleases lead to immunity potentiation in plants.


Assuntos
Cucumis sativus , Ribonucleases , Cucumis sativus/microbiologia , Fungos , Plantas , Imunidade , Doenças das Plantas/microbiologia , Imunidade Vegetal
3.
Mol Plant Pathol ; 24(11): 1451-1464, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522511

RESUMO

Colletotrichum higginsianum is a hemibiotrophic pathogen that causes anthracnose disease on crucifer hosts, including Arabidopsis thaliana. Despite the availability of genomic and transcriptomic information and the ability to transform both organisms, identifying C. higginsianum genes involved in virulence has been challenging due to recalcitrance to gene targeting and redundancy of virulence factors. To overcome these obstacles, we developed an efficient method for multiple gene disruption in C. higginsianum by combining CRISPR/Cas9 and a URA3-based marker recycling system. Our method significantly increased the efficiency of gene knockout via homologous recombination by introducing genomic DNA double-strand breaks. We demonstrated the applicability of the URA3-based marker recycling system for multiple gene targeting in the same strain. Using our technology, we successfully targeted two melanin biosynthesis genes, SCD1 and PKS1, which resulted in deficiency in melanization and loss of pathogenicity in the mutants. Our findings demonstrate the effectiveness of our methods in analysing virulence factors in C. higginsianum, thus accelerating research on plant-fungus interactions.


Assuntos
Arabidopsis , Colletotrichum , Técnicas de Inativação de Genes , Sistemas CRISPR-Cas/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Fatores de Virulência/genética , Colletotrichum/genética
4.
Bio Protoc ; 12(8): e4387, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35800094

RESUMO

The protein expression and purification process is an essential initial step for biochemical analysis of a protein of interest. Traditionally, heterologous protein expression systems (such as E. coli, yeast, insect cells, and cell-free) are employed for plant protein expression, although a plant expression system is often desirable for plant proteins, to ensure proper post-translational modifications. Here, we describe a method to express and purify the ectodomain of one of the leucine-rich repeat receptor-like kinase called CARD1/HPCA1, from Nicotiana benthamiana apoplastic fluid. First, we express His-tagged CARD1 ectodomain in the apoplastic space of N. benthamiana by the Agroinfiltration method. Then, we collect apoplastic fluids from the leaves and purify the His-tagged protein by Ni2+-affinity chromatography. In addition to plant-specific post-translational modifications, protein accumulated in the plant apoplastic space, rather than in the cytosolic space, should be kept under an oxidizing environment. Such an environment will help to maintain the property of intrinsic disulfide bonds in the protein of interest. Further, purification from the apoplastic fluids, rather than the total protein extract, will significantly reduce contaminants (for instance RuBisCO) during protein extraction, and simplify downstream processes. We envisage that our system will be useful for expressing various plant proteins, particularly the apoplastic or extracellular regions of membrane proteins.

5.
Nat Commun ; 12(1): 7303, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911942

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs), including salicylic acid (SA), target mammalian cyclooxygenases. In plants, SA is a defense hormone that regulates NON-EXPRESSOR OF PATHOGENESIS RELATED GENES 1 (NPR1), the master transcriptional regulator of immunity-related genes. We identify that the oxicam-type NSAIDs tenoxicam (TNX), meloxicam, and piroxicam, but not other types of NSAIDs, exhibit an inhibitory effect on immunity to bacteria and SA-dependent plant immune response. TNX treatment decreases NPR1 levels, independently from the proposed SA receptors NPR3 and NPR4. Instead, TNX induces oxidation of cytosolic redox status, which is also affected by SA and regulates NPR1 homeostasis. A cysteine labeling assay reveals that cysteine residues in NPR1 can be oxidized in vitro, leading to disulfide-bridged oligomerization of NPR1, but not in vivo regardless of SA or TNX treatment. Therefore, this study indicates that oxicam inhibits NPR1-mediated SA signaling without affecting the redox status of NPR1.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Piroxicam/análogos & derivados , Ácido Salicílico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meloxicam/farmacologia , Piroxicam/farmacologia
6.
Nature ; 587(7832): 92-97, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32879491

RESUMO

Quinones are produced and sensed in all kingdoms of life1-4. Plants are primary producers of quinone1,2, but the role of quinone as a signalling agent in plants remains largely unknown. One well-documented role of quinone is in the induction of haustoria (specialized feeding structures) in plants that parasitize roots, which occurs in the presence of the host-derived quinone compound 2,6-dimethoxy-1,4-benzoquinone (DMBQ)5. However, how parasitic plants sense DMBQ remains unclear, as is whether nonparasitic plants are capable of sensing quinones. Here we use Arabidopsis thaliana and DMBQ as a model plant and quinone to show that DMBQ signalling occurs in Arabidopsis via elevation of cytosolic Ca2+ concentration. We performed a forward genetic screen in Arabidopsis that isolated DMBQ-unresponsive mutants, which we named cannot respond to DMBQ 1 (card1). The CANNOT RESPOND TO DMBQ 1 (CARD1; At5g49760, also known as HPCA1) gene encodes a leucine-rich-repeat receptor-like kinase that is highly conserved in land plants. In Arabidopsis, DMBQ triggers defence-related gene expression, and card1 mutants show impaired immunity against bacterial pathogens. In Phtheirospermum japonicum (a plant that parasitizes roots), DMBQ initiates Ca2+ signalling in the root and is important for the development of the haustorium. Furthermore, CARD1 homologues from this parasitic plant complement DMBQ-induced elevation of cytosolic Ca2+ concentration in the card1 mutant. Our results demonstrate that plants-unlike animals and bacteria-use leucine-rich-repeat receptor-like kinases for quinone signalling. This work provides insights into the role of quinone signalling and CARD1 functions in plants that help us to better understand the signalling pathways used during the formation of the haustorium in parasitic plants and in plant immunity in nonparasitic plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Benzoquinonas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Sinalização do Cálcio , Cisteína/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Mutação , Imunidade Vegetal/genética , Proteínas Serina-Treonina Quinases/genética
7.
Methods Mol Biol ; 2139: 79-88, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32462579

RESUMO

Proteins in the extracellular space (apoplast) play a crucial role at the interface between plant cells and their proximal environment. Consequently, it is not surprising that plants actively control the apoplastic proteomic profile in response to biotic and abiotic cues. Comparative quantitative proteomics of plant apoplastic fluids is therefore of general interest in plant physiology. We here describe an efficient method to isolate apoplastic fluids from Arabidopsis thaliana leaves inoculated with a nonadapted powdery mildew pathogen.


Assuntos
Arabidopsis/química , Espaço Extracelular/química , Folhas de Planta/química , Proteômica/métodos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/química , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Estresse Fisiológico/fisiologia
8.
Plant Signal Behav ; 11(6): e1183085, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27191816

RESUMO

MEK2-SIPK/WIPK cascade, a Nicotiana benthamiana mitogen-activated protein kinase (MAPK) cascade, is an essential signaling pathway for plant immunity and involved in hypersensitive response (HR) accompanied by cell death. WRKY transcription factors as substrates of SIPK and WIPK have been isolated and implicated in HR cell death. Here, we show virus-induced gene silencing of WRKY genes compromised constitutively active MEK2-triggered cell death in N. benthamiana leaves. In general, HR cell death enhances susceptibility to necrotrophic pathogens such as Botrytis cinerea. However, the WRKY gene silencing elevated susceptibility to B. cinerea. These findings suggest that downstream WRKYs of MEK2-SIPK/WIPK cascade are required for cell death-dependent and -independent immunities in N. benthamiana.


Assuntos
Botrytis/fisiologia , Resistência à Doença/imunologia , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiologia , Proteínas de Plantas/metabolismo , Morte Celular , Inativação Gênica , Doenças das Plantas/microbiologia , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Nicotiana/citologia , Nicotiana/imunologia
9.
Plant Cell ; 27(9): 2645-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26373453

RESUMO

Pathogen attack sequentially confers pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) after sensing of pathogen patterns and effectors by plant immune receptors, respectively. Reactive oxygen species (ROS) play pivotal roles in PTI and ETI as signaling molecules. Nicotiana benthamiana RBOHB, an NADPH oxidase, is responsible for both the transient PTI ROS burst and the robust ETI ROS burst. Here, we show that RBOHB transactivation mediated by MAPK contributes to R3a/AVR3a-triggered ETI (AVR3a-ETI) ROS burst. RBOHB is markedly induced during the ETI and INF1-triggered PTI (INF1-PTI), but not flg22-tiggered PTI (flg22-PTI). We found that the RBOHB promoter contains a functional W-box in the R3a/AVR3a and INF1 signal-responsive cis-element. Ectopic expression of four phospho-mimicking mutants of WRKY transcription factors, which are MAPK substrates, induced RBOHB, and yeast one-hybrid analysis indicated that these mutants bind to the cis-element. Chromatin immunoprecipitation assays indicated direct binding of the WRKY to the cis-element in plants. Silencing of multiple WRKY genes compromised the upregulation of RBOHB, resulting in impairment of AVR3a-ETI and INF1-PTI ROS bursts, but not the flg22-PTI ROS burst. These results suggest that the MAPK-WRKY pathway is required for AVR3a-ETI and INF1-PTI ROS bursts by activation of RBOHB.


Assuntos
NADPH Oxidases/metabolismo , Nicotiana/imunologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/imunologia , Sistema de Sinalização das MAP Quinases , Dados de Sequência Molecular , NADPH Oxidases/genética , Fosforilação , Phytophthora infestans/patogenicidade , Imunidade Vegetal , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo , Sequências Reguladoras de Ácido Nucleico , Solanum tuberosum/genética , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia , Fatores de Transcrição/genética
10.
Methods Mol Biol ; 1171: 171-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24908128

RESUMO

Plants activate signaling networks in response to diverse pathogen-derived signals, facilitating transcriptional reprogramming through mitogen-activated protein kinase (MAPK) cascades. Identification of phosphorylation targets of MAPK and in vivo detection of the phosphorylated substrates are important processes to elucidate the signaling pathway in plant immune responses. We have identified a WRKY transcription factor, which is phosphorylated by defense-related MAPKs, SIPK and WIPK. Recent evidence demonstrated that some group I WRKY transcription factors, which contain a conserved motif in the N-terminal region, are activated by MAPK-dependent phosphorylation. In this chapter, we describe protocols for preparation of anti-phosphopeptide antibodies, detection of activated MAPKs using anti-phospho-MAPK antibody, and activated WRKY using anti-phospho-WRKY antibody, respectively.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Agrobacterium/genética , Anticorpos/imunologia , Anticorpos/isolamento & purificação , Immunoblotting , Fosfopeptídeos/imunologia , Fosfopeptídeos/metabolismo , Fosforilação , Folhas de Planta/enzimologia , Nicotiana/genética , Transformação Genética
11.
Mol Plant Microbe Interact ; 26(8): 868-79, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23617414

RESUMO

To investigate plant programmed cell death (PCD), we developed the model system using phytotoxin AAL, which is produced by necrotrophic pathogen Alternaria alternata f. sp. lycopersici, and AAL-sensitive Nicotiana umbratica. We previously reported that ethylene (ET) signaling plays a pivotal role in AAL-triggered cell death (ACD). However, downstream signaling of ET to ACD remains unclear. Here, we show that the modulator of AAL cell death 1 (MACD1), which is an APETALA2/ET response factor (ERF) transcription factor, participates in ACD and acts downstream of ET signaling during ACD. MACD1 is a transcriptional activator and MACD1 overexpression plants showed earlier ACD induction than control plants, suggesting that MACD1 positively regulates factors affecting cell death. To investigate the role of MACD1 in PCD, we used Arabidopsis thaliana and a structural analog of AAL, fumonisin B1 (FB1). FB1-triggered cell death was compromised in ET signaling and erf102 mutants. The loh2 mutants showed sensitivity to AAL, and the loh2-1/erf102 double mutant compromised ACD, indicating that ERF102 also participates in ACD. To investigate the PCD-associated genes regulated by ERF102, we compared our microarray data using ERF102 overexpression plants with the database of upregulated genes by AAL treatment in loh2 mutants, and found genes under the control of ERF102 in ACD.


Assuntos
Apoptose/efeitos dos fármacos , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Esfingosina/toxicidade , Apoptose/fisiologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Inativação Gênica , Proteínas de Plantas/genética , Transdução de Sinais
12.
Cell Host Microbe ; 13(3): 347-57, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23498959

RESUMO

CERK1 is a lysine motif-containing plant pattern recognition receptor for chitin and peptidoglycan. Chitin recognition by OsCERK1 triggers rapid engagement of a rice MAP kinase cascade, which leads to defense response activation. How the MAP kinase cascades are engaged downstream of OsCERK1 remains obscure. Searching for host proteins that interact with Xoo1488, an effector of the rice pathogen Xanthomonas oryzae, we identified the rice receptor-like cytoplasmic kinase, OsRLCK185. Silencing OsRLCK185 suppressed peptidoglycan- and chitin-induced immune responses, including MAP kinase activation and defense-gene expression. In response to chitin, OsRLCK185 associates with, and is directly phosphorylated by, OsCERK1 at the plasma membrane. Xoo1488 inhibits peptidoglycan- and chitin-induced immunity and pathogen resistance. Additionally, OsCERK1-mediated phosphorylation of OsRLCK185 is suppressed by Xoo1488, resulting in the inhibition of chitin-induced MAP kinase activation. These data support a role for OsRLCK185 as an essential immediate downstream signaling partner of OsCERK1 in mediating chitin- and peptidoglycan-induced plant immunity.


Assuntos
Proteínas de Bactérias/metabolismo , Oryza/enzimologia , Oryza/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Proteínas Quinases/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Xanthomonas/metabolismo , Proteínas de Bactérias/genética , Quitina/metabolismo , Oryza/genética , Oryza/microbiologia , Fosforilação , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Reconhecimento de Padrão/genética , Xanthomonas/genética
13.
Mol Plant Microbe Interact ; 25(8): 1015-25, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22512379

RESUMO

Programmed cell death (PCD), known as hypersensitive response cell death, has an important role in plant defense response. The signaling pathway of PCD remains unknown. We employed AAL toxin and Nicotiana umbratica to analysis plant PCD. AAL toxin is a pathogenicity factor of the necrotrophic pathogen Alternaria alternata f. sp. lycopersici. N. umbratica is sensitive to AAL toxin, susceptible to pathogens, and effective in Tobacco rattle virus-based virus-induced gene silencing (VIGS). VIGS analyses indicated that AAL toxin-triggered cell death (ACD) is dependent upon the mitogen-activated protein (MAP) kinase kinase MEK2, which is upstream of both salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) responsible for ethylene (ET) synthesis. ET treatment of MEK2-silenced N. umbratica re-established ACD. In SIPK- and WIPK-silenced N. umbratica, ACD was compromised and ET accumulation was not observed. However, in contrast to the case of MEK2-silenced plants, ET treatment did not induce cell death in SIPK- and WIPK-silenced plants. This work showed that ET-dependent pathway and MAP kinase cascades are required in ACD. Our results suggested that MEK2-SIPK/WIPK cascades have roles in ET biosynthesis; however, SIPK and WIPK have other roles in ET signaling or another pathway leading to cell death by AAL toxin.


Assuntos
Etilenos/metabolismo , Sistema de Sinalização das MAP Quinases , Nicotiana/citologia , Nicotiana/metabolismo , Esfingosina/farmacologia , Alternaria/patogenicidade , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Suscetibilidade a Doenças , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/microbiologia
14.
Curr Opin Plant Biol ; 15(4): 431-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22425194

RESUMO

Plants have evolved immune system to protect themselves against invading pathogens. Recent research has illustrated that signaling networks, after perception of diverse pathogen-derived signals, facilitate transcriptional reprogramming through mitogen-activated protein kinase (MAPK) cascades. WRKY proteins, which comprise a large family of plant transcription factors, are key players in plant immune responses. WRKY transcription factors participate in the control of defense-related genes either as positive or as negative regulators, and essentially are regulated at the transcriptional level. Emerging evidence emphasizes that group I WRKY transcription factors, which contain a conserved motif in the N-terminal region, are also activated by MAPK-dependent phosphorylation, underlining their importance in plant immunity.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/imunologia , Plantas/genética , Plantas/imunologia , Fatores de Transcrição/imunologia , Regulação da Expressão Gênica de Plantas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Plantas/metabolismo , Plantas/microbiologia , Transdução de Sinais/imunologia , Ativação Transcricional
15.
Plant Cell ; 23(3): 1153-70, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21386030

RESUMO

Mitogen-activated protein kinase (MAPK) cascades have pivotal roles in plant innate immunity. However, downstream signaling of plant defense-related MAPKs is not well understood. Here, we provide evidence that the Nicotiana benthamiana WRKY8 transcription factor is a physiological substrate of SIPK, NTF4, and WIPK. Clustered Pro-directed Ser residues (SP cluster), which are conserved in group I WRKY proteins, in the N-terminal region of WRKY8 were phosphorylated by these MAPKs in vitro. Antiphosphopeptide antibodies indicated that Ser residues in the SP cluster of WRKY8 are phosphorylated by SIPK, NTF4, and WIPK in vivo. The interaction of WRKY8 with MAPKs depended on its D domain, which is a MAPK-interacting motif, and this interaction was required for effective phosphorylation of WRKY8 in plants. Phosphorylation of WRKY8 increased its DNA binding activity to the cognate W-box sequence. The phospho-mimicking mutant of WRKY8 showed higher transactivation activity, and its ectopic expression induced defense-related genes, such as 3-hydroxy-3-methylglutaryl CoA reductase 2 and NADP-malic enzyme. By contrast, silencing of WRKY8 decreased the expression of defense-related genes and increased disease susceptibility to the pathogens Phytophthora infestans and Colletotrichum orbiculare. Thus, MAPK-mediated phosphorylation of WRKY8 has an important role in the defense response through activation of downstream genes.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nicotiana/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Mutação , Fosforilação , Filogenia , Phytophthora infestans/patogenicidade , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Fatores de Transcrição/genética , Ativação Transcricional
16.
BMC Plant Biol ; 10: 97, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20504319

RESUMO

BACKGROUND: Plant Ca2+ signals are involved in a wide array of intracellular signaling pathways after pest invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate the signaling following Ca2+ influx after insect herbivory. However, until now this prediction was not testable. RESULTS: To investigate the roles CPKs play in a herbivore response-signaling pathway, we screened the characteristics of Arabidopsis CPK mutants damaged by a feeding generalist herbivore, Spodoptera littoralis. Following insect attack, the cpk3 and cpk13 mutants showed lower transcript levels of plant defensin gene PDF1.2 compared to wild-type plants. The CPK cascade was not directly linked to the herbivory-induced signaling pathways that were mediated by defense-related phytohormones such as jasmonic acid and ethylene. CPK3 was also suggested to be involved in a negative feedback regulation of the cytosolic Ca2+ levels after herbivory and wounding damage. In vitro kinase assays of CPK3 protein with a suite of substrates demonstrated that the protein phosphorylates transcription factors (including ERF1, HsfB2a and CZF1/ZFAR1) in the presence of Ca2+. CPK13 strongly phosphorylated only HsfB2a, irrespective of the presence of Ca2+. Furthermore, in vivo agroinfiltration assays showed that CPK3-or CPK13-derived phosphorylation of a heat shock factor (HsfB2a) promotes PDF1.2 transcriptional activation in the defense response. CONCLUSIONS: These results reveal the involvement of two Arabidopsis CPKs (CPK3 and CPK13) in the herbivory-induced signaling network via HsfB2a-mediated regulation of the defense-related transcriptional machinery. This cascade is not involved in the phytohormone-related signaling pathways, but rather directly impacts transcription factors for defense responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Sinalização do Cálcio , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Spodoptera , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Ciclopentanos/metabolismo , Citosol/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Oxilipinas/metabolismo , Fosforilação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
17.
Plant Cell ; 21(8): 2517-26, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19706796

RESUMO

Plant basal resistance is activated by virulent pathogens in susceptible host plants. A Colletotrichum orbiculare fungal mutant defective in the SSD1 gene, which regulates cell wall composition, is restricted by host basal resistance responses. Here, we identified the Nicotiana benthamiana signaling pathway involved in basal resistance by silencing the defense-related genes required for restricting the growth of the C. orbiculare mutant. Only silencing of MAP Kinase Kinase2 or of both Salicylic Acid Induced Protein Kinase (SIPK) and Wound Induced Protein Kinase (WIPK), two mitogen-activated protein (MAP) kinases, allowed the mutant to infect and produce necrotic lesions similar to those of the wild type on inoculated leaves. The fungal mutant penetrated host cells to produce infection hyphae at a higher frequency in SIPK WIPK-silenced plants than in nonsilenced plants, without inducing host cellular defense responses. Immunocomplex kinase assays revealed that SIPK and WIPK were more active in leaves inoculated with mutant fungus than with the wild type, suggesting that induced resistance correlates with MAP kinase activity. Infiltration of heat-inactivated mutant conidia induced both SIPK and WIPK more strongly than did those of the wild type, while conidial exudates of the wild type did not suppress MAP kinase induction by mutant conidia. Therefore, activation of a specific MAP kinase pathway by fungal cell surface components determines the effective level of basal plant resistance.


Assuntos
Colletotrichum/fisiologia , Proteínas Fúngicas/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Nicotiana/metabolismo , Nicotiana/microbiologia , Colletotrichum/genética , Colletotrichum/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata/genética , Imunidade Inata/fisiologia , Immunoblotting , Sistema de Sinalização das MAP Quinases/genética , Modelos Biológicos , Dados de Sequência Molecular , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA