Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 36(9): 2069-2085, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127303

RESUMO

The reconstruction of ancestral scenarios is widely used to study the evolution of characters along phylogenetic trees. One commonly uses the marginal posterior probabilities of the character states, or the joint reconstruction of the most likely scenario. However, marginal reconstructions provide users with state probabilities, which are difficult to interpret and visualize, whereas joint reconstructions select a unique state for every tree node and thus do not reflect the uncertainty of inferences. We propose a simple and fast approach, which is in between these two extremes. We use decision-theory concepts (namely, the Brier score) to associate each node in the tree to a set of likely states. A unique state is predicted in tree regions with low uncertainty, whereas several states are predicted in uncertain regions, typically around the tree root. To visualize the results, we cluster the neighboring nodes associated with the same states and use graph visualization tools. The method is implemented in the PastML program and web server. The results on simulated data demonstrate the accuracy and robustness of the approach. PastML was applied to the phylogeography of Dengue serotype 2 (DENV2), and the evolution of drug resistances in a large HIV data set. These analyses took a few minutes and provided convincing results. PastML retrieved the main transmission routes of human DENV2 and showed the uncertainty of the human-sylvatic DENV2 geographic origin. With HIV, the results show that resistance mutations mostly emerge independently under treatment pressure, but resistance clusters are found, corresponding to transmissions among untreated patients.


Assuntos
Biologia Computacional/métodos , Filogenia , Software , Teoria da Decisão , Vírus da Dengue/genética , HIV/genética
2.
Genes Genet Syst ; 92(1): 35-42, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28216511

RESUMO

All members of the order Trypanosomatida known to date are parasites that are most likely descendants of a free-living ancestor. Trypanosomatids are an excellent model to assess the transition from a free-living to a parasitic lifestyle, because a large amount of experimental data has been accumulated for well-studied members that are harmful to humans and livestock (Trypanosoma spp. and Leishmania spp.). However, recent advances in our understanding of the diversity of trypanosomatids and their close relatives (i.e., members of the class Kinetoplastea) have suggested that the change in lifestyle took place multiple times independently from that which gave rise to the extant trypanosomatid parasites. In the current study, transcriptomic data of two parasitic kinetoplastids belonging to orders other than Trypanosomatida, namely Azumiobodo hoyamushi (Neobodonida) and Trypanoplasma borreli (Parabodonida), were generated. We re-examined the transition from a free-living to a parasitic lifestyle in the evolution of kinetoplastids by combining (i) the relationship among the five orders in Kinetoplastea and (ii) that among free-living and parasitic species within the individual orders. The former relationship was inferred from a large-scale multigene alignment including the newly generated data from Azumiobodo and Trypanoplasma, as well as the data from another parasitic kinetoplastid, Perkinsela sp., deposited in GenBank; and the latter was inferred from a taxon-rich small subunit ribosomal DNA alignment. Finally, we discuss the potential value of parasitic kinetoplastids identified in Parabodonida and Neobodonida for studying the evolutionary process that turned a free-living species into a parasite.


Assuntos
Evolução Molecular , Genes de Protozoários , Filogenia , Trypanosomatina/patogenicidade , DNA de Cinetoplasto/genética , Alinhamento de Sequência , Trypanosomatina/genética , Virulência/genética
3.
Sci Rep ; 6: 23230, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26996979

RESUMO

Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily detectable from water buffalo in these countries, indicating that buffalo Plasmodium is distributed in a wider region than India, which is the only area in which buffalo Plasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium.


Assuntos
Malária/veterinária , Plasmodium/genética , Animais , Búfalos/parasitologia , Citocromos b/genética , Feminino , Genes de Protozoários , Malária/parasitologia , Masculino , Filogenia , Proteínas de Protozoários/genética , Análise de Sequência de DNA
5.
Sci Rep ; 5: 12406, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26257102

RESUMO

Bacteria require two class-I release factors, RF1 and RF2, that recognize stop codons and promote peptide release from the ribosome. RF1 and RF2 were most likely established through gene duplication followed by altering their stop codon specificities in the common ancestor of extant bacteria. This scenario expects that the two RF gene families have taken independent evolutionary trajectories after the ancestral gene duplication event. However, we here report two independent cases of conversion between RF1 and RF2 genes (RF1-RF2 gene conversion), which were severely examined by procedures incorporating the maximum-likelihood phylogenetic method. In both cases, RF1-RF2 gene conversion was predicted to occur in the region encoding nearly entire domain 3, of which functions are common between RF paralogues. Nevertheless, the 'direction' of gene conversion appeared to be opposite from one another-from RF2 gene to RF1 gene in one case, while from RF1 gene to RF2 gene in the other. The two cases of RF1-RF2 gene conversion prompt us to propose two novel aspects in the evolution of bacterial class-I release factors: (i) domain 3 is interchangeable between RF paralogues, and (ii) RF1-RF2 gene conversion have occurred frequently in bacterial genome evolution.


Assuntos
Proteínas de Escherichia coli/genética , Fatores de Terminação de Peptídeos/genética , Motivos de Aminoácidos , Bactérias/genética , Bactérias/metabolismo , Teorema de Bayes , Chloroflexi/genética , Chloroflexi/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Fatores de Terminação de Peptídeos/classificação , Fatores de Terminação de Peptídeos/metabolismo , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/química , RNA Ribossômico 23S/classificação , RNA Ribossômico 23S/genética , Ribossomos/genética , Ribossomos/metabolismo , Alinhamento de Sequência , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
6.
Mol Biol Evol ; 32(10): 2598-604, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26048548

RESUMO

Organisms with nonphotosynthetic plastids often retain genomes; their gene contents provide clues as to the functions of these organelles. Yet the functional roles of some retained genes-such as those coding for ATP synthase-remain mysterious. In this study, we report the complete plastid genome and transcriptome data of a nonphotosynthetic diatom and propose that its ATP synthase genes may function in ATP hydrolysis to maintain a proton gradient between thylakoids and stroma, required by the twin arginine translocator (Tat) system for translocation of particular proteins into thylakoids. Given the correlated retention of ATP synthase genes and genes for the Tat system in distantly related nonphotosynthetic plastids, we suggest that this Tat-related role for ATP synthase was a key constraint during parallel loss of photosynthesis in multiple independent lineages of algae/plants.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Diatomáceas/genética , Genomas de Plastídeos , Fotossíntese , Sistema de Translocação de Argininas Geminadas/metabolismo , Modelos Biológicos , Filogenia , Mapeamento Físico do Cromossomo
7.
Sci Rep ; 4: 4641, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24717814

RESUMO

Phylogenetic position of the marine biflagellate Palpitomonas bilix is intriguing, since several ultrastructural characteristics implied its evolutionary connection to Archaeplastida or Hacrobia. The origin and early evolution of these two eukaryotic assemblages have yet to be fully elucidated, and P. bilix may be a key lineage in tracing those groups' early evolution. In the present study, we analyzed a 'phylogenomic' alignment of 157 genes to clarify the position of P. bilix in eukaryotic phylogeny. In the 157-gene phylogeny, P. bilix was found to be basal to a clade of cryptophytes, goniomonads and kathablepharids, collectively known as Cryptista, which is proposed to be a part of the larger taxonomic assemblage Hacrobia. We here discuss the taxonomic assignment of P. bilix, and character evolution in Cryptista.


Assuntos
Criptófitas/classificação , Criptófitas/genética , Sequência de Aminoácidos , Sequência de Bases , Biodiversidade , Evolução Biológica , Linhagem da Célula , Evolução Molecular , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de RNA , Transcriptoma/genética
8.
Genome Biol Evol ; 6(2): 306-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24448982

RESUMO

The unicellular eukaryotic assemblage Discoba (Excavata) comprises four lineages: the Heterolobosea, Euglenozoa, Jakobida, and Tsukubamonadida. Discoba has been considered as a key assemblage for understanding the early evolution of mitochondrial (mt) genomes, as jakobids retain the most gene-rich (i.e., primitive) genomes compared with any other eukaryotes determined to date. However, to date, mt genome sequences have been completed for only a few groups within Discoba, including jakobids, two closely related heteroloboseans, and kinetoplastid euglenozoans. The Tsukubamonadida is the least studied lineage, as the order was only recently established with the description of a sole representative species, Tsukubamonas globosa. The evolutionary relationship between T. globosa and other discobids has yet to be resolved, and no mt genome data are available for this particular organism. Here, we use a "phylogenomic" approach to resolve the relationship between T. globosa, heteroloboseans, euglenozoans, and jakobids. In addition, we have characterized the mt genome of T. globosa (48,463 bp in length), which encodes 52 putative protein-coding and 29 RNA genes. By mapping the gene repertoires of discobid mt genomes onto the well-resolved Discoba tree, we model gene loss events during the evolution of discobid mt genomes.


Assuntos
Eucariotos/genética , Evolução Molecular , Genoma Mitocondrial , Filogenia , DNA Mitocondrial/genética , Eucariotos/classificação
9.
PLoS One ; 8(3): e58458, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516484

RESUMO

Heme is an essential molecule for vast majority of organisms serving as a prosthetic group for various hemoproteins. Although most organisms synthesize heme from 5-aminolevulinic acid through a conserved heme biosynthetic pathway composed of seven consecutive enzymatic reactions, nematodes are known to be natural heme auxotrophs. The completely sequenced Caenorhabditis elegans genome, for example, lacks all seven genes for heme biosynthesis. However, genome/transcriptome sequencing of Strongyloides venezuelensis, an important model nematode species for studying human strongyloidiasis, indicated the presence of a gene for ferrochelatase (FeCH), which catalyzes the terminal step of heme biosynthesis, whereas the other six heme biosynthesis genes are apparently missing. Phylogenetic analyses indicated that nematode FeCH genes, including that of S. venezuelensis (SvFeCH) have a fundamentally different evolutionally origin from the FeCH genes of non-nematode metazoa. Although all non-nematode metazoan FeCH genes appear to be inherited vertically from an ancestral opisthokont, nematode FeCH may have been acquired from an alpha-proteobacterium, horizontally. The identified SvFeCH sequence was found to function as FeCH as expected based on both in vitro chelatase assays using recombinant SvFeCH and in vivo complementation experiments using an FeCH-deficient strain of Escherichia coli. Messenger RNA expression levels during the S. venezuelensis lifecycle were examined by real-time RT-PCR. SvFeCH mRNA was expressed at all the stages examined with a marked reduction at the infective third-stage larvae. Our study demonstrates the presence of a bacteria-like FeCH gene in the S. venezuelensis genome. It appeared that S. venezuelensis and some other animal parasitic nematodes reacquired the once-lost FeCH gene. Although the underlying evolutionary pressures that necessitated this reacquisition remain to be investigated, it is interesting that the presence of FeCH genes in the absence of other heme biosynthesis genes has been reported only for animal pathogens, and this finding may be related to nutritional availability in animal hosts.


Assuntos
Ferroquelatase/metabolismo , Strongyloides/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Ativação Enzimática , Ferroquelatase/química , Ferroquelatase/genética , Regulação da Expressão Gênica , Teste de Complementação Genética , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes , Alinhamento de Sequência , Strongyloides/classificação , Strongyloides/genética
10.
Evol Bioinform Online ; 8: 357-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22798721

RESUMO

In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.

11.
Mol Phylogenet Evol ; 60(1): 68-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21530665

RESUMO

We here report a deviant genetic code, in which AUA is read as methionine (Met) instead of isoleucine (Ile), in the green alga-derived plastid in the dinoflagellate Lepidodinium chlorophorum. Although L. chlorophorum cDNA sequences of 11 plastid-encoded genes were deposited in the GenBank database, the non-canonical usage of AUA in this dinoflagellate plastid has been overlooked prior to this study. We compared 11 plastid-encoded genes of L. chlorophorum with the corresponding genes of 17 green algal plastids. Intriguingly, AUA often occurred in the L. chlorophorum sequences at codon positions that are predominantly occupied by Met amongst the green algal sequences. Coincidentally, the L. chlorophorum sequences utilized few AUA codons at the positions predominantly occupied by Ile amongst the green algal sequences. These observations clearly indicated that both AUA and AUG encode Met, while AUU and AUC encode Ile, in the L. chlorophorum plastid. Despite the rapidly-evolving nature of L. chlorophorum plastid-encoded genes, our statistical tests incorporating the deviant code suggest no significant difference in amino acid composition among the L. chlorophorum plastid and the green algal plastids considered in this study. Finally, the possible evolutionary events required for the reassignment of AUA from Ile to Met in Lepitodinium plastids were discussed.


Assuntos
Clorófitas/genética , Dinoflagellida/genética , Código Genético/genética , Plastídeos/genética , Sequência de Aminoácidos , Análise por Conglomerados , Evolução Molecular , Isoleucina/genética , Metionina/genética , Dados de Sequência Molecular , RNA de Transferência/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA