Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Top Companion Anim Med ; 53-54: 100773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36990177

RESUMO

Cold atmospheric plasma (CAP) has shown promising results against squamous cell carcinoma (SCC) in both in vivo and in vitro assays, mainly in humans and mice. Its applicability for treatment of feline tumors, however, remains unknown. This study aimed to evaluate the anticancer effects of CAP on a head and neck squamous cell carcinoma (HNSCC) cell lineage and against a clinical case of cutaneous SCC in a cat. Control and treatment groups employing the HNSCC cell line (SCC-25) were used, the latter exposed to CAP for 60 seconds, 90 seconds, or 120 seconds. The cells were subjected to the MTT assay nitric oxidation assay and thermographic in vitro analyses. The clinical application was performed in one cat with cutaneous SCC (3 sites). The lesions were treated and evaluated by thermographic, histopathological, and immunohistochemical examinations (caspase-3 and TNF-alpha). Treatment of the SCC-25 cells for 90 seconds and 120 seconds resulted in a significant nitrite concentration increase. Decreased cell viability was observed after 24 hours and 48 hours, regardless of exposure time. However, the cell viability reduction observed at 72 hours was significant only in the 120 seconds treatment. In vitro, the temperature decreased for all treatment times, while the plasma induced a slight increase in mean temperature (0.7°C) in the in vivo assay. Two of the 3 clinical tumors responded to the treatment: one with a complete response and the other, partial, while the third (lower lip SCC) remained stable. Both remaining tumors displayed apoptotic areas and increased expression of caspase-3 and TNF-alpha. Adverse effects were mild and limited to erythema and crusting. The CAP exhibited an in vitro anticancer effect on the HNSCC cell line, demonstrated by a dose-dependent cell viability reduction. In vivo, the therapy appears safe and effective against feline cutaneous SCC. The treatment did not result in a clinical response for 1 of 3 lesions (proliferative lower lip tumor), however, a biological effect was still demonstrated by the higher expression of apoptosis indicators.


Assuntos
Carcinoma de Células Escamosas , Doenças do Gato , Neoplasias de Cabeça e Pescoço , Gases em Plasma , Humanos , Gatos , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/veterinária , Caspase 3 , Projetos Piloto , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/veterinária , Gases em Plasma/uso terapêutico , Gases em Plasma/farmacologia , Fator de Necrose Tumoral alfa , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/veterinária , Doenças do Gato/terapia
2.
Life Sci ; 295: 120393, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167880

RESUMO

AIMS: Hyperbaric oxygen (HBO) therapy has been widely used for the adjunctive treatment of diabetic wounds, and is currently known to influence left ventricular (LV) function. However, morphological and molecular repercussions of the HBO in the diabetic myocardium remain to be described. We aimed to investigate whether HBO therapy would mitigate adverse LV remodeling caused by streptozotocin (STZ)-induced diabetes. MAIN METHODS: Sixty-day-old Male Wistar rats were divided into four groups: Control (n = 8), HBO (n = 7), STZ (n = 10), and STZ + HBO (n = 8). Diabetes was induced by a single STZ injection (60 mg/kg, i.p.). HBO treatment (100% oxygen at 2.5 atmospheres absolute, 60 min/day, 5 days/week) lasted for 5 weeks. LV morphology was evaluated using histomorphometry. Gene expression analyzes were performed for LV collagens I (Col1a1) and III (Col3a1), matrix metalloproteinases 2 (Mmp2) and 9 (Mmp9), and transforming growth factor-ß1 (Tgfb1). The Immunoexpression of cardiac tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) were also quantified. KEY FINDINGS: HBO therapy prevented LV concentric remodeling, heterogeneous myocyte hypertrophy, and fibrosis in diabetic rats associated with attenuation of leukocyte infiltration. HBO therapy also increased Mmp2 gene expression, and inhibited the induction of Tgfb1 and Mmp9 mRNAs caused by diabetes, and normalized TNF-α and VEGF protein expression. SIGNIFICANCE: HBO therapy had protective effects for the LV structure in STZ-diabetic rats and ameliorated expression levels of genes involved in cardiac collagen turnover, as well as pro-inflammatory and pro-angiogenic signaling.


Assuntos
Oxigenoterapia Hiperbárica/métodos , Remodelação Ventricular/fisiologia , Animais , Cardiotônicos/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/fisiopatologia , Fibrose , Ventrículos do Coração/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Wistar , Estreptozocina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
3.
Br J Pharmacol ; 178(11): 2284-2304, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33434950

RESUMO

BACKGROUND AND PURPOSE: Inflammation associated with the tumour microenvironment (TME) is critical for cancer development, and immunotherapeutic strategies modulating the immune response in cancer have been crucial. In this study, a methotrexate-loaded (MTX) poly(lactic-co-glycolic acid)-based (PLGA) drug nanocarrier covered with polyethyleneimine (Pei) and hyaluronic acid (HA) was developed and combined with an PD-L1 antibody to investigate anti-cancer and immunomodulatory effects in breast cancer TME. EXPERIMENTAL APPROACH: Naked or HA-coated PeiPLGA-MTX nanoparticles (NPs) were assessed on 4T1 breast cancer cells grown in culture and in a mouse model of orthotopic tumour growth. Tumours were evaluated by qRT-PCR and immunohistochemistry. The cell death profile and cell migration were analysed in vitro in 4T1 cells. Polarization of murine macrophages (RAW cells) was also carried out. KEY RESULTS: Naked or HA-coated PeiPLGA-MTX NPs used alone or combined with PD-L1 antibody modified the tumourigenic course by TME immunomodulation, leading to reduction of primary tumour size and metastases. STAT3 and NF-κB were the major genes downregulated by NPs. In tumor-associated macrophages (TAM) such regulation switched M2 phenotype (CD163) towards M1 (CD68) and reduced levels of IL-10, TGF-ß and CCL22. Moreover, malignant cells showed overexpression of FADD, APAF-1, caspase-3 and E-cadherin, and decreased expression of Bcl-2, MDR-1, survivin, vimentin, CXCR4 and PD-L1 after treatment with NPs. CONCLUSION AND IMPLICATIONS: NPs-mediated STAT3/NF-κB signalling axis suppression disrupted crosstalk between immune and malignant cells, reducing immunosuppression and critical pro-tumour events. These findings provide a promising therapeutic approach capable of guiding the immune TME to suppress the development of breast cancer.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Animais , Antígeno B7-H1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Imunomodulação , Camundongos , NF-kappa B , Fator de Transcrição STAT3 , Microambiente Tumoral , Macrófagos Associados a Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA