Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Med Genomics ; 11(1): 125, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591067

RESUMO

BACKGROUND: There is a clear need for assays that can predict the risk of metastatic prostate cancer following curative procedures. Importantly these assays must be analytically robust in order to provide quality data for important clinical decisions. DNA microarray based gene expression assays measure several analytes simultaneously and can present specific challenges to analytical validation. This study describes the analytical validation of one such assay designed to predict metastatic recurrence in prostate cancer using primary formalin fixed paraffin embedded tumour material. METHODS: Accuracy was evaluated with a method comparison study between the assay development platform (Prostate Disease Specific Array) and an alternative platform (Xcel™ microarray) using 50 formalin-fixed, paraffin-embedded prostate cancer patient samples. An additional 70 samples were used to establish the assay reportable range. Determination of assay precision and sensitivity was performed on multiple technical replicates of three prostate cancer samples across multiple variables (operators, days, runs, reagent lots, and equipment) and RNA/cDNA inputs respectively using the appropriate linear mixed model. RESULTS: The overall agreement between the development and alternative platform was 94.7% (95% confidence interval, 86.9-98.5%). The reportable range was determined to be 0.150 to 1.107 for core needle biopsy samples and - 0.214 to 0.844 for radical prostatectomy samples. From the precision study, the standard deviations for assay repeatability and reproducibility were 0.032 and 0.040 respectively. The sensitivity study demonstrated that a total RNA input and cDNA input of 50 ng and 3.5 µg respectively was conservative. CONCLUSION: The Metastatic Assay was found to be highly reproducible and precise. In conclusion the studies demonstrated an acceptable analytical performance for the assay and support its potential use in the clinic.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/patologia , Perfilação da Expressão Gênica/normas , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/normas , Inclusão em Parafina , Prognóstico , Prostatectomia , Neoplasias da Próstata/genética , Controle de Qualidade , Reprodutibilidade dos Testes
2.
Bone ; 106: 112-120, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29033380

RESUMO

A more accurate understanding of the molecular mechanisms and signaling pathways underpinning human mesenchymal stem cell (MSC) plasticity and differentiation properties is pivotal for accomplishing solid and diligent translation of MSC-based experimental therapeutics and clinical trials to broad clinical practice. In addition, this knowledge enables selection of MSC subpopulations with increased differentiation potential and/or use of exogenous factors to boost this potential. Here, we report that CD105 (ENG) is a predictive biomarker of osteogenic potential in two types of MSCs: stem cells from human exfoliated deciduous teeth (SHED) and human adipose-derived stem cells (hASC). We also validate that CD105 can be used to select and enrich for subpopulations of SHED and hASC with higher in vitro osteogenic potential. In addition, we show that hsa-mir-1287 regulates CD105 expression, and propose that fine-tuning hsa-mir-1287 levels could be used to control osteopotential in SHED. These findings provide better discernment of the molecular bases behind MSC osteogenic plasticity and open up new perspectives to leverage osteogenic potential in MSCs by modulation of a specific miRNA.


Assuntos
Endoglina/metabolismo , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Criança , Endoglina/genética , Citometria de Fluxo , Humanos , Imunofenotipagem , Fator de Crescimento Insulin-Like II/farmacologia , MicroRNAs/genética , Osteogênese/genética , Osteogênese/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
3.
Stem Cells Dev ; 25(16): 1249-60, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27339175

RESUMO

Apert Syndrome (AS) is one of the most severe forms of craniosynostosis. It is caused by gain-of-function mutations in the receptor fibroblast growth factor receptor 2 (FGFR2), which leads to ligand-receptor promiscuity. Here, we aimed to better understand the behavior of mesenchymal stem cells (MSCs) and of fibroblastoid cells, cellular populations that are part of the suture complex, when stimulated with different fibroblast growth factors (FGFs). We also aimed to verify whether FGFR2 specificity loss due to AS mutations would change their signaling behavior. We tested this hypothesis through cell proliferation and differentiation assays and through gene expression profiling. We found that FGF19 and FGF10 increase proliferation of fibroblastoid cells harboring the FGFR2 p.S252W mutation, but not of mutant MSCs. FGF19 and FGF10 were associated with different expression profiles in p.S252W cells. Further, in accordance to our gene expression microarray data, FGF19 decreases bone differentiation rate of mutant fibroblastoid cells and increases bone differentiation rate of MSCs. This effect in osteogenesis appears to be mediated by BMP signaling. The present data indicate that non-natural FGFR2 ligands, such as FGF10 and FGF19, are important factors in the pathophysiology of AS. Further research is needed to determine the role of modulation of MSC proliferation or use of FGF19 or anti-BMP2 as inhibitors of osteogenesis in AS subjects' cells, and whether these findings can be used in the clinical management of AS.


Assuntos
Acrocefalossindactilia/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Acrocefalossindactilia/genética , Acrocefalossindactilia/patologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Células-Tronco Mesenquimais/metabolismo , Mutação/genética , Osteogênese/genética , Ratos Wistar , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
4.
Stem Cell Rev Rep ; 11(4): 635-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25931278

RESUMO

Mesenchymal stem cell (MSC) osteogenic differentiation potential varies according to factors such as tissue source and cell population heterogeneity. Pre-selection of cell subpopulations harboring higher osteopotential is a promising strategy to achieve a thorough translation of MSC-based therapies to the clinic. Here, we searched for novel molecular markers predictive of osteopotential by comparing MSC populations from two sources harboring different osteogenic potentials. We show that MSCs from human deciduous teeth (SHED) have an intrinsically higher osteogenic potential when compared with MSCs from human adipose tissue (hASCs) under the same in vitro controlled induction system. Transcriptome profiling revealed IGF2 to be one of the top upregulated transcripts before and during early in vitro osteogenic differentiation. Further, exogenous IGF2 supplementation enhanced alkaline phosphatase activity and matrix mineralization, and inhibition of IGF2 lessened these parameters in SHED and hASCs, validating IGF2 as an osteogenic factor in these MSCs. Further, we found IGF2 to be biallelically expressed in SHED, but not in hASCs. We observed a 4 % methylation increase in the imprinting control region within the IGF2-H19 locus in SHED, and this is mainly due to 2 specific CpG sites. Thus, we suggest that IGF2 upregulation in SHED is due to loss of imprinting. This study unravels osteogenic properties in SHED, implying IGF2 as a potential biomarker of MSCs with higher osteopotential, and unveils IGF2 loss-of-imprinting in SHED.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular/genética , Polpa Dentária/metabolismo , Fator de Crescimento Insulin-Like II/genética , Osteogênese/genética , Tecido Adiposo/citologia , Adulto , Idoso , Sequência de Bases , Benzopiranos/farmacologia , Western Blotting , Criança , Análise por Conglomerados , Polpa Dentária/citologia , Perfilação da Expressão Gênica/métodos , Humanos , Fator de Crescimento Insulin-Like II/antagonistas & inibidores , Fator de Crescimento Insulin-Like II/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Ativação Transcricional/efeitos dos fármacos
5.
Stem Cells Int ; 2015: 249098, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25802529

RESUMO

Constraints for the application of MSCs for bone reconstruction include restricted self-renewal and limited cell amounts. iPSC technology presents advantages over MSCs, providing homogeneous cellular populations with prolonged self-renewal and higher plasticity. However, it is unknown if the osteogenic potential of iPSCs differs from that of MSCs and if it depends on the iPSCs originating cellular source. Here, we compared the in vitro osteogenesis between stem cells from human deciduous teeth (SHED) and MSC-like cells from iPSCs from SHED (iPS-SHED) and from human dermal fibroblasts (iPS-FIB). MSC-like cells from iPS-SHED and iPS-FIB displayed fibroblast-like morphology, downregulation of pluripotency markers and upregulation of mesenchymal markers. Comparative in vitro osteogenesis analysis showed higher osteogenic potential in MSC-like cells from iPS-SHED followed by MSC-like cells from iPS-FIB and SHED. CD105 expression, reported to be inversely correlated with osteogenic potential in MSCs, did not display this pattern, considering that SHED presented lower CD105 expression. Higher osteogenic potential of MSC-like cells from iPS-SHED may be due to cellular homogeneity and/or to donor tissue epigenetic memory. Our findings strengthen the rationale for the use of iPSCs in bone bioengineering. Unveiling the molecular basis behind these differences is important for a thorough use of iPSCs in clinical scenarios.

6.
Stem Cells Int ; 2012: 303610, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22550502

RESUMO

Adipose tissue-derived stem cells (ASCs) association to fat in autologous lipotransfer is promising for a more effective soft tissue reconstruction, and optimization of protocols to isolate ASCs from lipoaspirate fat is much needed. We demonstrated that an increase in adipocyte differentiation is dependent on the number of ASCs. In a sample of 10 donors, we found a higher concentration of nucleated cells in the lower abdomen compared to flank (P = 0.015). In a sample of 6 donors we did not find differences in the cell yield obtained by manual or pump-assisted aspiration (P = 0.56). We suggest that the increase in the number of ASCs in the reinjected fat may enhance the efficiency of newly formed adipose tissue and that the anatomical region from which to harvest fat tissue needs to be considered to optimize the number of ASCs in the harvested tissue. Finally, pump-assisted aspiration can be used without any significant harm to the viability of cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA