Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sci Rep ; 14(1): 24671, 2024 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-39433801

RESUMO

The threat of antibiotic resistance is escalating, diminishing the effectiveness of numerous antibiotics due to the rapid development of resistant bacteria. In response, the use of green-synthesized nanoparticle, alone or combined with antimicrobial agents, appears promising. This study explores the effectiveness of zinc oxide nanoparticles (ZnONPs) synthesized using Loranthus cordifolius leaf extracts and subsequently coated with anethole. The fabrication of these nanoparticles was confirmed via UV-Vis, FTIR and TEM analyses, ensuring the nanoparticles were produced as intended. Utilizing a nanoprecipitation process that excludes evaporation and drying, a high drug loading capacity of 16.59% was accomplished. The encapsulation efficiency for anethole was recorded at 88.23 ± 4.98%. Antibacterial efficacy was assessed by com paring the green-synthesized ZnONPs (average size: 14.47 nm), anethole-loaded ZnONPs (average size: 14,75 nm), and commercially sourced ZnONPs. The ZnONPs with anethole demonstrated superior inhibition against all tested bacterial strains, including Gram-negative species like Pseudomonas aeruginosa and Escherichia coli, and Gram-positive species like Bacillus subtilis and Staphylococcus aureus, outperforming the commercially available ZnONPs. Additionally, anethole-coated ZnONPs showed the greatest inhibition of Gyr-B activity (IC50 = 0.78 ± 0.2 M), better than both green-synthesized and commercially available ZnONPs. These findings emphasize the enhanced antimicrobial properties of ZnONPs, particularly when combined with green synthesis and anethole loading, highlighting their potential in various biomedical applications.


Assuntos
Derivados de Alilbenzenos , Anisóis , Antibacterianos , Química Verde , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Óxido de Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Anisóis/química , Anisóis/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Bactérias/efeitos dos fármacos
3.
Sci Rep ; 14(1): 22165, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333361

RESUMO

This research purpose was focused to document the traditional ethnobotanical knowledge (TEK) associated with important wild plants and indigenous communities residing in mountainous zone of District Sudhnoti of Azad Jammu and Kashmir, Pakistan and to determine their conservation status with suggestions and recommendations to protect and propagate the rare and endangered wild flora of the area for sustainable use. The data regarding traditional ethnomedicines (TEMs) and phytogeography with conservation analysis of wild plants were collected via structured and semi structured interviews of 150 participants belonging to various professions and of both genders. Prior consent and permission were obtained from family heads and from all the participants, and the data were shared with all the informants through the local female translator guide. To validate the collected data, various microstatistical tools, such as the informant consensus factor (ICF), fidelity level (FL) and data matrix ranking (DMR) were used. The relative frequency of citations (RFC) and rank order of popularity (ROP) were also calculated to determine and authenticate the relative importance of TEMs which may be further studied in future research and used for drug discovery. In the present study, 150 locally important plants belonging to 69 families were documented, and the Rosaceae was the most dominant and prevalent family. The results indicated that many locally important plants have multiple uses such as food, medicine, fodder, shelter, ornamental and fuel. The TEMs obtained from these plants have been known to be useful for curing various infirmities such as flu, renal disorders, fever, malaria, cough, migraine, whooping cough, influenza, skin rashes, allergies, stomach aches, wounds and bruises, diabetes, tumours and joint pains. The ICF analysis revealed that renal calculus, malaria, fever, whooping cough, rheumatoid arthritis and arthritis were prevalent infirmities of the mountainous area. The FL analysis indicated the popularity of these plants used in various TEMs and among these Artemisia maritima and Berberis lycium were the most common. The DMR indicated that Pinus roxburghii was the most common species being used for multipurpose by the indigenous communities. The highest use value index was found for Indigofera linifolia. The relative frequency of citations was calculated to determine the importance of plants in traditional ethnomedicine, highlighting Morus nigra, Pinus wallichiana, and Rosa indica as significant species. The Jaccard index indicated a high level of novelty in the research which can be exploited for neo-drug discovery and drug development. In conclusion, this study has successfully documented the ethnobotanically and ethnomedicinally important plants in District Sudhnoti, Azad Jammu and Kashmir, Pakistan. The findings of this research contribute to the preservation and documentation of cultural heritage, as well as provide a foundation for further studies in ethnobotany, ethnopharmacology and biodiversity conservation efforts for sustainable provision of wild flora to the indigenous communities which will also assist in combating drasting climatic changes.


Assuntos
Etnobotânica , Medicina Tradicional , Plantas Medicinais , Paquistão/etnologia , Humanos , Etnobotânica/métodos , Feminino , Masculino , Medicina Tradicional/métodos , Adulto , Pessoa de Meia-Idade , Conhecimento , Idoso , Conhecimentos, Atitudes e Prática em Saúde
4.
PeerJ ; 12: e18106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346051

RESUMO

The yield and concentration of secondary metabolites (SMs) in plants can vary due to numerous challenges such as dynamic environmental conditions, moisture, soil quality, soil organic matter and plant genetics. To obtain a good yield of SMs novel elicitation approaches, such as the use of biotic and abiotic stressors, genetic modifications, and optimized growth conditions, have been practiced, particularly the use of selenium nanoparticles (SeNPs) and light emitting diode (LED) interaction through employing tissue culture technique. In the present study, in vitro callus cultures of sandalwood (Santalum album L.) were subjected to elicitation with different concentrations of SeNPs with doses of 30 µg/L, 60 µg/L, and 90 µg/L in combination with green (∼550 nm), red (∼660 nm) and blue (∼460 nm) LED lights. Interaction of these treatments produced 16 treatments replicated three times in 48 test tubes. The results were analysed using two-way ANOVA and Tukey's HSD test. The study revealed that synergistic interaction between SeNPs and LED light wavelengths significantly enhanced callus growth and secondary metabolite (SM) production eliciting callus cultures with blue LED light and a dose of 90 µg/L SeNPs resulted in an increase in callus growth including fresh weight, dry weight, and the number of shoot branches per callus. This combined treatment positively influenced the functions of major bioactive antioxidants such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL). Furthermore, the concentrations of essential secondary metabolites, including total phenolic, total saponins, casein/BSA/PVPP-bound tannins, flavan-3-ols, and tocopherols experienced substantial elevation under the synergistic influence of SeNPs and LED light conditions. The sandalwood plants produced through the callus culturing technique using optimized SeNPs and LED lights show an enhanced yield of secondary metabolites, which will be very useful and potential for pharmaceutical, cosmetic and various other industries to discover and develop novel products.


Assuntos
Luz , Santalum , Selênio , Santalum/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Nanopartículas/química , Metabolismo Secundário/efeitos dos fármacos , Técnicas de Cultura de Tecidos/métodos , Antioxidantes/metabolismo , Antioxidantes/farmacologia
5.
Biol Futur ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302628

RESUMO

In recent years, the realm of astrobiology has expanded beyond the search for microbial life to encompass the intriguing possibility of plant life beyond our planet. Plant astrobiology delves into the adaptations and mechanisms that might allow Earth's flora to flourish in the harsh conditions of outer space and other celestial bodies. This review aims to shed light on the captivating field of plant astrobiology, its implications, and the challenges and opportunities it presents. Plant astrobiology marries the disciplines of botany and astrobiology, challenging us to envision the growth of plants beyond Earth's atmosphere. Researchers in this field are not only exploring the potential for plant life on other planets and moons but also investigating how plants could be harnessed to sustain life during extended space missions. The review discusses how plants could adapt to environments characterized by low gravity, high radiation, extreme temperature fluctuations, and different atmospheric compositions. It highlights the physiological changes necessary for plants to survive and reproduce in these conditions. A pivotal concept is the integration of plants into closed-loop life support systems, where plants would play a crucial role in recycling waste products, generating oxygen, and producing food. The review delves into ongoing research involving genetic modifications and synthetic biology techniques to enhance plants' resilience in space environments. It addresses ethical considerations associated with altering organisms for off-planet habitation. Additionally, the review contemplates the psychological and emotional benefits of having greenery in enclosed, isolated space habitats. The review concludes that by employing advanced research methodologies, the field of plant astrobiology can greatly enhance the viability and sustainability of future space missions, highlighting the essential role of plants in sustaining long-term human presence beyond Earth.

6.
BMC Plant Biol ; 24(1): 624, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951758

RESUMO

Drought poses significant risks to maize cultivation by impairing plant growth, water uptake and yield; nano priming offers a promising avenue to mitigate these effects by enhancing plant water relations, stress tolerance and overall productivity. In the current experiment, we tested a hypothesis that seed priming with iron oxide nanoparticles (n-Fe2O3) can improve maize performance under water stress by improving its growth, water relations, yield and biochemical attributes. The experiment was conducted on a one main plot bisected into two subplots corresponding to the water and drought environments. Within each subplot, maize plants were raised from n-Fe2O3 primed seeds corresponding to 0 mg. L- 1 (as control treatment), 25, 50, 75, and 100 mg. L- 1 (as trial treatments). Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved the leaf relative water content, water potential, photosynthetic water use efficiency, and leaf intrinsic water use efficiency of maize plants by 13%, 44%, 64% and 17%, respectively compared to control under drought stress. The same treatments improved plant biochemical attributes such as total chlorophyll content, total flavonoids and ascorbic acid by 37%, 22%, and 36%, respectively. Seed priming with n-Fe2O3 accelerated the functioning of antioxidant enzymes such as SOD and POD and depressed the levels of leaf malondialdehyde and hydrogen peroxide significantly. Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved cob length, number of kernel rows per cob, and 100 kernel weight by 59%, 27% and 33%, respectively, under drought stress. Seed priming with n-Fe2O3 can be used to increase maize production under limited water scenarios.


Assuntos
Desidratação , Sementes , Água , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Água/metabolismo , Secas , Fotossíntese/efeitos dos fármacos , Compostos Férricos , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia
7.
Odontology ; 112(4): 1123-1134, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38554219

RESUMO

Dental caries is a commonly occurring non-communicable disease throughout the world that might compromise the quality of any individual's life. Glass ionomer cements (GIC) are the most acceptable restorative materials due to their ease of manipulation, minimal tooth loss and least invasive strategy; however, they lack mechanical stability that has become a point of concern. Nanoparticles (NPs) are an outstanding option for modifying and enhancing the properties of dental materials. The focus of this study was to prepare novel, biocompatible titania dioxide (TiO2) NPs as a dental-restorative material using an efficient probiotic Bacillus coagulans. The prepared NPs were incorporated into glass ionomer restorative material at varying concentrations and investigated for cell viability percentage, microhardness and surface morphology. Results indicated that pure 100% anatase phase TiO2 NPs with particle size of 21.84 nm arranged in smooth, spherical agglomerates and clusters forms. These NPs depicted cell viability > 90%, thus confirming their non-cytotoxic behavior. GIC restorative materials reinforced by 5% titania (TiO2) NPs demonstrated the highest microhardness in comparison to the control group and other experimental groups of the study. Surface morphology analysis revealed a reduction in cracks in this novel dental-restorative material supporting its compatible biological nature with better hardness strength and negligible crack propagation. Overall, these results indicated that TiO2 NPs produced using a biological approach could be easily used as restorative materials in dental applications.


Assuntos
Bacillus coagulans , Cimentos de Ionômeros de Vidro , Dureza , Teste de Materiais , Nanopartículas , Probióticos , Propriedades de Superfície , Titânio , Titânio/química , Cimentos de Ionômeros de Vidro/química , Sobrevivência Celular , Microscopia Eletrônica de Varredura , Restauração Dentária Permanente/métodos , Humanos , Tamanho da Partícula
8.
Pak J Med Sci ; 39(5): 1249-1254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680828

RESUMO

Objective: To evaluate antagonistic role of titanium oxide nanoparticles against selected dental caries promoting bacteria. Methods: This in vitro-experimental study was conducted at Pakistan Institute of Engineering and Applied Sciences (PIEAS), National Institute of Health (NIH) and School of Dentistry (SOD), Islamabad for the period of one year from February 2022 to January 2023. Modified hydrothermal heating method was used to prepare titanium oxide nanoparticles (TiO2Nps). Size, shape, phase, band gap energy, surface and elemental composition of Nps were deciphered by application of various modern techniques including x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS), UV-Vis diffuse reflectance spectroscopy (DRS), atomic force microscopy (AFM), energy dispersive x-ray spectroscopy (EDX). Antimicrobial action of nanoparticles was evaluated against representatives of gram-positive (mono-derm) and Gram negative bacteria (di-derm) responsible for promoting dental caries. The zones of inhibition were calculated by disc diffusion method for each bacterial strain. Results: Characterization revealed that TiO2Nps were having an average size of 54nm, showing anatase-rutile phase having spherical, with very few- irregularly shaped particles. TiO2Nps contained only pure titanium and oxygen in the EDX image but organic compounds in FTIR scan. Results of antimicrobial action indicated their potent bactericidal action against Pseudomonas aeruginosa (20mm), Escherichia coli (19mm) and Lactobacillus acidophilus (19nm) while comparatively less activity against Staphylococcus aureus (16mm).. Conclusion: TiO2Nps fabricated by modified protocol displayed an effective antimicrobial activity and can be used as an alternative to the contemporary chemotherapeutics against selected bacterial pathogens to prevent dental caries.

9.
Front Plant Sci ; 14: 1232271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727857

RESUMO

The excessive use of chemical fertilizers is deteriorating both the environment and soil, making it a big challenge faced by sustainable agriculture. To assist the efforts for the solution of this burning issue, nine different potential native strains of plant growth-promoting bacteria (PGPB) namely, SA-1(Bacillus subtilis), SA-5 (Stenotrophomonas humi),SA-7(Azospirillum brasilense), BH-1(Azospirillum oryzae), BH-7(Azotobacter armeniacus), BH-8(Rhizobium pusense), BA-3(Azospirillum zeae), BA-6(Rhizobium pusense), and BA-7(Pseudomonas fragi) were isolated that were characterized morphologically, biochemically and molecularly on the basis of 16S rRNA sequencing. Furthermore, the capability of indigenous PGPB in wheat (Triticum aestivum, Chakwal-50) under control, DAP+FYM, SA-1,5,7, BH-1,7,8, BA-3,6,7, DAP+ FYM + SA-1,5,7, DAP+FYM+ BH-1,7,8 and DAP+FYM+ BA-3,6,7 treatments was assessed in a randomized complete block design (RCBD). The results of the study showed that there was a significant increase in plant growth, nutrients, quality parameters, crop yield, and soil nutrients at three depths under SA-1,5,7, BH-1,7,8, and BA-3,6,7 in combination with DAP+FYM. Out of all these treatments, DAP+ FYM + BA-3,6,7 was found to be the most efficient for wheat growth having the highest 1000-grain weight of 55.1 g. The highest values for plant height, no. of grains/spike, spike length, shoot length, root length, shoot dry weight, root dry weight, 1000 grain weight, biological yield, and economic yield were found to be 90.7 cm, 87.7 cm, 7.20 cm, 53.5 cm, 33.5 cm, 4.87 g, 1.32 g, 55.1 g, 8209 kg/h, and 4572 kg/h, respectively, in the DAP+FYM+BA treatment. The DAP+FYM+BA treatment had the highest values of TN (1.68 µg/mL), P (0.38%), and K (1.33%). Likewise, the value of mean protein (10.5%), carbohydrate (75%), lipid (2.5%), and available P (4.68 ppm) was also highest in the DAP+FYM+BA combination. C:P was found to be significantly highest (20.7) in BA alone but was significantly lowest (11.9) in DAP+FYM+BA. Hence, the integration of strains BA-3, BA-5, and BA-7 in fertilizers can be regarded as the most suitable choice for agricultural growth in the sub-mountainous lower region of AJK. This could serve as the best choice for sustainable wheat growth and improved soil fertility with lesser impacts on the environment.

10.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375162

RESUMO

The challenges in the production of metabolites of medicinal potential from wild plants include low yields, slow growth rates, seasonal variations, genetic variability and regulatory as well as ethical constraints. Overcoming these challenges is of paramount significance and interdisciplinary approaches and innovative strategies are prevalently applied to optimize phytoconstituents' production, enhance yield, biomass, ensure sustainable consistency and scalability. In this study, we investigated the effects of elicitation with yeast extract and calcium oxide nanoparticles (CaONPs) on in vitro cultures of Swertia chirata (Roxb. ex Fleming) Karsten. Specifically, we examined the effects of different concentrations of CaONPs in combination with different concentrations of yeast extract on various parameters related to callus growth, antioxidant activity, biomass and phytochemical contents. Our results showed that elicitation with yeast extract and CaONPs had significant effects on the growth and characteristics of callus cultures of S. chirata. The treatments involving yeast extract and CaONPs were found to be the most effective in increasing the contents of total flavonoid contents (TFC), total phenolic contents (TPC), amarogentin and mangiferin. These treatments also led to an improvement in the contents of total anthocyanin and alpha tocopherols. Additionally, the DPPH scavenging activity was significantly increased in the treated samples. Furthermore, the treatments involving elicitation with yeast extract and CaONPs also led to significant improvements in callus growth and characteristics. These treatments promoted callus response from an average to an excellent level and improved the color and nature of the callus from yellow to yellow-brown and greenish and from fragile to compact, respectively. The best response was observed in treatments involving 0.20 g/L yeast extract and 90 ug/L CaONPs. Overall, our findings suggest that elicitation with yeast extract and CaONPs can be a useful strategy for promoting the growth, biomass, phytochemical contents and antioxidant activity of callus cultures of S. chirata in comparison to wild plant herbal drug samples.


Assuntos
Nanopartículas , Swertia , Antioxidantes/química , Swertia/química , Compostos Fitoquímicos/farmacologia
11.
Plants (Basel) ; 12(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37299109

RESUMO

The current study explored the antioxidant and antibacterial capabilities of zinc oxide nanoparticles (ZnONPs) synthetized using methanolic leaf extracts of the medicinal herb Viscum album. Through TEM investigation and UV-Vis analysis, which peaked at 406 nm, the synthesis of ZnONPs was verified. TEM analyses showed that the synthesized ZnONPs had a size distribution with an average of 13.5 nm and a quasi-spherical shape. Forty-four phytoconstituents were found in the methanolic leaf extracts of V. album. Additionally, a comparison of the antibacterial effectiveness and antioxidant capacity of aqueous and methanolic extracts of wild-grown V. album phytomedicine and green-manufactured ZnONPs was conducted. The green-generated ZnONPs were examined against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa and shown to have superior antibacterial activity by 22%, 66%, and 44%, respectively, as compared to wild herbal medicinal extracts. Since the ZnONPs' aqueous extracts had higher concentrations of DNA gyrase-B inhibitory components, they were shown to be more effective in limiting bacterial growth. In contrast to the percentages of 49% and 57% for a wild plant extract, the aqueous- and methanolic-extract-mediated green ZnONPs, with a 100 g/mL concentration, showed 94% and 98% scavenging capacity for DPPH free radicals, respectively. However, methanolic extracts were more effective than aqueous extracts in terms of the antioxidant analyses. This study establishes that greenly produced ZnONPs have the potential to be used in nanomedicine to treat bacteria that are resistant to a variety of drugs, as well as those with reactive oxygen species toxicity.

12.
Nanomaterials (Basel) ; 13(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176998

RESUMO

This paper explores the potential of nano seed priming with calcium oxide nanoparticles in maintaining the redox status in carom (Trachyspermum ammi L.) plants by modulating non-enzymatic antioxidants and enzymatic antioxidants. Calcium oxide nanoparticles were prepared in four testing regimes comprising 25, 50, 75, and 100 ppm along with the control treatment of 0 ppm (distilled water). Priming was performed by soaking the carom seeds in the aerated water, and plants were grown under split plots corresponding to drought and water. Seed priming with 75 ppm CaONPs reduced hydrogen peroxide, malondialdehyde contents and electrolyte leakage by 23.3%, 35.9% and 31.6%, respectively, in the water-stressed carom plants. The glutathione s-transferase, superoxide dismutase and peroxidase functions improved under water stress by 42.3%, 24.1% and 44.8%, respectively, in the carom plants raised through 100 ppm primed seeds with CaO_NPs. Priming induced better Ca2+ signaling, which affected the enzymes of the ascorbate glutathione cycle, enabling them to maintain redox status in the carom plants exposed to drought stress. The morpho-agronomic traits of carom plants in terms of number of umbels, hundred seeds weights, shoot and root length and biomass improved significantly upon seed priming treatments. Seed priming with CaO_NPs is a viable strategy to combat reactive oxygen species-mediated damages in the carom plants.

13.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049061

RESUMO

Modern nanotechnology encompasses every field of life. Nowadays, phytochemically fabricated nanoparticles are being widely studied for their bioactivities and biosafety. The present research studied the synthesis, characterization, stability, biocompatibility, and in vitro bioactivities of calcium oxide nanoparticles (CaONPs). The CaONPs were synthesized using Citrullus colocynthis ethanolic fruit extracts. Greenly synthesized nanoparticles had an average size of 35.93 ± 2.54 nm and showed an absorbance peak at 325 nm. An absorbance peak in this range depicts the coating of phenolic acids, flavones, flavonols, and flavonoids on the surface of CaONPs. The XRD pattern showed sharp peaks that illustrated the preferred cubic crystalline nature of triturate. A great hindrance to the use of nanoparticles in the field of medicine is their extremely reactive nature. The FTIR analysis of the CaONPs showed a coating of phytochemicals on their surface, due to which they showed great stability. The vibrations present at 3639 cm-1 for alcohols or phenols, 2860 cm-1 for alkanes, 2487 cm-1 for alkynes, 1625 cm-1 for amines, and 1434 cm-1 for carboxylic acids and aldehydes show adsorption of phytochemicals on the surface of CaONPs. The CaONPs were highly stable over time; however, their stability was slightly disturbed by varying salinity and pH. The dialysis membrane in vitro release analysis revealed consistent nanoparticle release over a 10-h period. The bioactivities of CaONPs, C. colocynthis fruit extracts, and their synergistic solution were assessed. Synergistic solutions of both CaONPs and C. colocynthis fruit extracts showed great bioactivity and biosafety. The synergistic solution reduced cell viability by only 14.68% and caused only 16% hemolysis. The synergistic solution inhibited Micrococcus luteus slightly more effectively than streptomycin, with an activity index of 1.02. It also caused an 83.87% reduction in free radicals.

14.
Plants (Basel) ; 12(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37050182

RESUMO

In the present research, selenium nanoparticles (SeNPs) were tested for their use as seed priming agents under field trials on tomatoes (Solanum lycopersicum L.) for their efficacy in conferring drought tolerance. Four different seed priming regimes of SeNPs were created, comprising 25, 50, 75, and 100 ppm, along with a control treatment of 0 ppm. Seeds were planted in split plots under two irrigation regimes comprising water and water stress. The results suggest that seed priming with SeNPs can improve tomato crop performance under drought stress. Plants grown with 75 ppm SeNPs-primed seeds had lower hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels by 39.3% and 28.9%, respectively. Seed priming with 75 ppm SeNPs further increased the superoxide dismutase (SOD) and catalase (CAT) functions by 34.9 and 25.4%, respectively. The same treatment increased the total carotenoids content by 13.5%, α-tocopherols content by 22.8%, total flavonoids content by 25.2%, total anthocyanins content by 19.6%, ascorbic acid content by 26.4%, reduced glutathione (GSH) content by 14.8%, and oxidized glutathione (GSSG) content by 13.12%. Furthermore, seed priming with SeNPs upregulated the functions of enzymes of ascorbate glutathione cycle. Seed priming with SeNPs is a smart application to sustain tomato production in arid lands.

15.
J Econ Entomol ; 116(2): 505-512, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36881679

RESUMO

Carpophilus davidsoni (Dobson) is an important pest of Australian stone fruit. Current management practices for this beetle include the use of a trap that contains an attractant lure comprised of aggregation pheromones and a 'co-attractant' mixture of volatiles from fruit juice fermented using Baker's yeast, Saccharomyces cerevisiae (Hansen). We explored whether volatiles from yeasts Pichia kluyveri (Bedford) and Hanseniaspora guilliermondii (Pijper), which are closely associated with C. davidsoni in nature, might improve the effectiveness of the co-attractant. Field trials using live yeast cultures revealed that P. kluyveri trapped higher numbers of C. davidsoni compared to H. guilliermondii, and comparative GC-MS of volatile emissions of the two yeasts led to the selection of isoamyl acetate and 2-phenylethyl acetate for further investigation. In subsequent field trials, trap catches of C. davidsoni were significantly increased when 2-phenylethyl acetate was added to the co-attractant, compared to when isoamyl acetate was added, or both isoamyl acetate and 2-phenylethyl acetate. We also tested different concentrations of ethyl acetate in the co-attractant (the only ester in the original lure) and found contrasting results in cage bioassays and field trails. Our study demonstrates how exploring volatile emissions from microbes that are ecologically associated with insect pests can result in more potent lures for use in integrated pest management strategies. Results from laboratory bioassays screening volatile compounds should be treated with caution when making inferences regarding attraction under field conditions.


Assuntos
Besouros , Animais , Frutas , Austrália , Leveduras , Feromônios
16.
PLoS One ; 18(3): e0282531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36862701

RESUMO

Mung bean (Vigna radiata L.) grown under heavy metals such as cadmium stress shows poor growth patterns and yield attributes which can be extenuated by the application of calcium and organic manure to the contaminated soil. The present study was designed to decipher the calcium oxide nanoparticles and farmyard manure-induced Cd stress tolerance through improvement in physiological and biochemical attributes of mung bean plants. A pot experiment was conducted by defining appropriate positive and negative controls under differential soil treatments with farmyard manure (1% and 2%) and calcium oxide nanoparticles (0, 5, 10, and 20 mg/L). Root treatment of 20 mg/L calcium oxide nanoparticles (CaONPs) and 2% farmyard manure (FM) reduced the cadmium acquisition from the soil and improved growth in terms of plant height by 27.4% compared to positive control under Cd stress. The same treatment improved shoot vitamin C (ascorbic acid) contents by 35% and functioning of antioxidant enzymes catalase and phenyl ammonia lyase by 16% and 51%, respectively and the levels of malondialdehyde and hydrogen peroxide decreased by 57% and 42%, respectively with the application of 20 mg/L CaONPs and 2% of FM. The gas exchange parameters such as stomata conductance and leaf net transpiration rate were improved due to FM mediated better availability of water. The FM improved soil nutrient contents and friendly biota culminating in good yields. Overall, 2% FM and 20 mg/L CaONPs proved as the best treatment to reduce cadmium toxicity. The growth, yield, and crop performance in terms of physiological and biochemical attributes can be improved by the application of CaONPs and FM under the heavy metal stress.


Assuntos
Vigna , Cádmio/toxicidade , Esterco , Compostos de Cálcio/farmacologia , Ácido Ascórbico
17.
PLoS One ; 17(10): e0274706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36227949

RESUMO

In this research antidiabetic, analgesic and antiulcer potential of traditional ethnomedicinal plant: Emex spinosa (L.) Campd. (Family Polygonaceae) was evaluated by extracting its phytoconstituents using methanol (MeOH) solvent through maceration protocol. The quantitative phytochemical analysis of the extract revealed flavonoids were highest in leaf extract (15.63±0.93 mg/mL) and with (11.5±0.57 mg/mL) in stem. Alkaloids and tanins were also present in the samples in various conc. while saponins were absent. To confirm pharmaceutical potential of plant against ulcer, diabetes and analgesic infirmities, a model experimental animal wistar albino rats (Rattus norvegicus) were used. In antiulcer study, using hot plate method the maximum results were observed with 250 mg/kg in the 2.5 hours of study. The leaf extract showed a 40.41±2.73 latency time and the fruit with a 36.77±2.41, and the stem with a 27.85±3.09, which was comparable to the standard drug Aspirin, i.e., 47.5±0.57. For analysis of antiulcer potential of the plants parts doses of 250 and 500 mg/kg was applied to check the reclamation of ethanol-induced acute ulcer and of Aspirin-induced chronic ulcer of stomach. In order to confirm efficacy of the drug potential of plant following parameters like microscopic evaluation, gastric volume, total acidity, mucosa weight, ulcer index, pH and histopathology of stomach were analyzed. In antidiabetic analysis, in an acute study after a single dose of 500 mg/kg extract after 2hrs the blood glucose levels were 367±51.09958NS, 416±59.79548NS, 437.5±61.96437NS mg/dL for leaf, stem and fruit, respectively. After4hrs 351.75±88.27644NS mg/dl, 448.25±25.64948NS mg/dl, 445.25±27.07205NS mg/dl and after 6hrs 354.5±92.70428NS, 442±24.60691NS, a440±33.16625NS mg/dl, respectively. The analgesic activity was explored by applying hot plate, tail flick and formalin paw licking method. In hot plate method the maximum results were observed with 250mg/kg in the 2.5 hours of study. The leaf extract showed a 40.41±2.73 latency time and the fruit with a 36.77±2.41 and the stem with a 27.85±3.09, which was comparable to the standard drug Aspirin, i.e., 47.5±0.57. The respective plant extracts at 250mg/kg showed a gradual rise in latency time when compared to the control. It was concluded that all three components of E. spinosa perform proved to be significant as potential source of herbal medicines to cure different prevalently occurring diseases. Furthermore, it was confirmed through results analysis that plant t can be used to discover novel drug using dedicated high throughput techniques and ethnopharmacological approaches.


Assuntos
Antiulcerosos , Rumex , Saponinas , Úlcera Gástrica , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Antiulcerosos/uso terapêutico , Aspirina/uso terapêutico , Glicemia , Etanol/efeitos adversos , Flavonoides/uso terapêutico , Formaldeído/efeitos adversos , Hipoglicemiantes/efeitos adversos , Metanol , Compostos Fitoquímicos/efeitos adversos , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar , Saponinas/uso terapêutico , Solventes/efeitos adversos , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera/tratamento farmacológico
18.
Appl Microsc ; 52(1): 10, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36264393

RESUMO

The effect of carbon doping contents on the microstructure, hardness, and corrosion properties of heat-treated AISI steel grades of plain carbon steel was investigated in this study. Various microstructures including coarse ferrite-pearlite, fine ferrite-pearlite, martensite, and bainite were developed by different heat treatments i.e. annealing, normalizing, quenching, and austempering, respectively. The developed microstructures, micro-hardness, and corrosion properties were investigated by a light optical microscope, scanning electron microscope, electromechanical (Vickers Hardness tester), and electrochemical (Gamry Potentiostat) equipment, respectively. The highest corrosion rates were observed in bainitic microstructures (2.68-12.12 mpy), whereas the lowest were found in the fine ferritic-pearlitic microstructures (1.57-6.36 mpy). A direct correlation has been observed between carbon concentration and corrosion rate, i.e. carbon content resulted in an increase in corrosion rate (2.37 mpy for AISI 1020 to 9.67 mpy for AISI 1050 in annealed condition).

19.
J Water Health ; 20(9): 1343-1363, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36170190

RESUMO

Accelerated mining activities have increased water contamination with potentially toxic elements (PTEs) and their associated human health risk in developing countries. The current study investigated the distribution of PTEs, their potential sources and health risk assessment in both ground and surface water sources in mining and non-mining areas of Khyber Pakhtunkhwa, Pakistan. Water samples (n = 150) were taken from selected sites and were analyzed for six PTEs (Ni, Cr, Zn, Cu, Pb and Mn). Among PTEs, Cr showed a high mean concentration (497) µg L-1, followed by Zn (414) µg L-1 in the mining area, while Zn showed the lowest mean value (4.44) µg L-1 in non-mining areas. Elevated concentrations of Ni, Cr and a moderate level of Pb in ground and surface water of Mohmand District exceeded the permissible limits set by WHO. Multivariate statistical analyses showed that the pollution sources of PTEs were mainly from mafic-ultramafic rocks, acid mine drainage, open dumping of mine wastes and mine tailings. The hazard quotient (HQ) was the highest for children relative to that for adults, but not higher than the USEPA limits. The hazard index (HI) for ingestions of all selected PTEs was lower than the threshold value (HIing < 1), except for Mohmand District, which showed a value of HI >1 in mining areas through ingestion. Moreover, the carcinogenic risk (CR) values exceeded the threshold limits for Ni and Cr set by the USEPA (1.0E-04-1.0E-06). In order to protect the drinking water sources of the study areas from further contamination, management techniques and policy for mining operations need to be implemented.


Assuntos
Água Potável , Metais Pesados , Poluentes do Solo , Adulto , Criança , Água Potável/análise , Monitoramento Ambiental/métodos , Humanos , Chumbo/análise , Metais Pesados/análise , Paquistão , Medição de Risco/métodos , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
20.
Plants (Basel) ; 11(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35567180

RESUMO

Climate change (CC) is a global threat to the agricultural system. Changing climatic conditions are causing variations in temperature range, rainfall timing, humidity percentage, soil structure, and composition of gases in environment. All these factors have a great influence on the phenological events in plants' life cycle. Alternation in phenological events, especially in crops, leads to either lower yield or crop failure. In light of respective statement, the present study is designed to evaluate the climatic impacts on two heat-resistant wheat varieties (Sialkot-2008 and Punjab-2018). During the study, impacts of CC on wheat phenology and annual yield were predicted considering six climatic factors: maximum temp, minimum temperature, precipitation, humidity, soil moisture content, and solar radiation using two quantitative approaches. First, a two-year field experimental plot was set up at five different sites of study-each plot a bisect of two sites. Phenological changes of both varieties were monitored with respect to climatic factors and changes were recorded in a scientific manner. Secondly, experimental results were compared with Global climate models (GMC) models with a baseline range of the past 40 years (1970-2010) and future fifty years (2019-2068) under Representative Concentration Pathway (RCP) 8.5 model analysis. Field experiment showed a (0.02) difference in maximum temperature, (0.04) in minimum temperature, (0.17) in humidity, and about (0.03) significant difference in soil moisture content during 2019-2021. Under these changing climatic parameters, a 0.21% difference was accounted in annual yield. Furthermore, the results were supported by GMC model analysis, which was analyzed by Decision Support System for Agrotechnology Transfer (DSSAT) model. Results depicted that non-heat-resistant wheat varieties could cause up to a 6~13% reduction in yield during future 50 years (2019-2068)) compared with the last 40 years (1970-2010). A larger decline in wheat grain number relative to grain weight is a key reducer of wheat yield, under future climate change circumstances. Using heat-tolerant wheat varieties will not only assist to overcome this plethora but also provide a potential increase of up to 7% to 10% in indigenous environment. On the other hand, it was concluded that cultivating these heat-resistant varieties that are also ripening late culminates into enhanced thermal time chucks during the grain-filling period; hence, wheat yield will increase by 8% to 12%. In changing climatic conditions and varieties, 'Punjab-2018' will be the better choice for peasants and farm-land owners to obtain a better yield of wheat to cope with the necessities of food on the domestic and national level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA