Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(46): e202312223, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37750233

RESUMO

We report on a dendronized bis-urea macrocycle 1 self-assembling via a cooperative mechanism into two-dimensional (2D) nanosheets formed solely by alternated urea-urea hydrogen bonding interactions. The pure macrocycle self-assembles in bulk into one-dimensional liquid-crystalline columnar phases. In contrast, its self-assembly mode drastically changes in CHCl3 or tetrachloroethane, leading to 2D hydrogen-bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick-like hydrogen bonding pattern between bis-urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non-covalent interaction motif, which is of great interest for materials development.

2.
Chemistry ; 29(36): e202300698, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37067772

RESUMO

Herein, we probe the hydrogen bond-driven self-assembly of a triphenylamine (TPA) bis-urea macrocycle in the presence and absence of guests. Comprised of methylene urea-bridged TPAs with exterior tridodecyloxy benzene solubilizing groups, the macrocycle exhibits concentration-dependent aggregate formation in THF and H2 O/THF mixtures as characterized by 1 H NMR and DOSY experiments. Its assembly processes were further probed by temperature-dependent UV/Vis and fluorescence spectroscopy. Upon heating, UV/Vis spectra exhibit a hypsochromic shift in the λmax , while fluorescence spectra show an increase in emission intensity. Conversely, the protected macrocycle that lacks hydrogen bond donors demonstrates no significant change. Thermodynamic analysis indicates a cooperative self-assembly pathway with distinct nucleation and elongation regimes. The morphology and structure of the aggregate were elucidated by dynamic light scattering, atomic force microscopy, scanning and transmission electron microscopy. Variable temperature emission spectra were utilized to monitor the impact of guests, such as diphenylacetylene, that can be bound in the columnar channels. The findings suggest that the elongation of assemblies is influenced by the presence of these guests. In comparison, diphenyl sulfoxide, likely functioning as a chain stopper, limited the assembly size. These studies suggest that judicious selection of (co)monomers may modulate the function and utility of these supramolecular systems.

3.
J Cardiothorac Surg ; 17(1): 192, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987836

RESUMO

BACKGROUND: Unlike subcutaneous lipomas, thoracic cavity lipomas are extremely rare and can develop to be quite large without causing any symptoms. However, managing massive lipoma that involves both chest cavities is usually challenging, especially when considering the approach for excision. CASE: We report our experience of surgical management of a case of a 46-year-old male with huge intrathoracic lipoma that extends bilaterally and is known to be the largest of such kind. The tumor was resected successfully using median sternotomy. Histological analysis confirmed features of lipoma. CONCLUSION: To remove a bilateral intrathoracic lipoma, various surgical approaches have been documented. In our experience, a median sternotomy allows better exposure, which aids in complete surgical extirpation resulting in the prevention of recurrence.


Assuntos
Lipoma , Cavidade Torácica , Humanos , Lipoma/diagnóstico por imagem , Lipoma/cirurgia , Masculino , Pessoa de Meia-Idade , Esternotomia , Cavidade Torácica/patologia
4.
J Am Soc Mass Spectrom ; 33(5): 840-850, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35471025

RESUMO

Gas-phase ion-mobility spectrometry provides a unique platform to study the effect of mobile charge(s) or charge location on collisional cross section and ion separation. Here, we evaluate the effects of cation/anion adduction in a series of xylene and pyridyl macrocycles that contain ureas and thioureas. We explore how zinc binding led to unexpected deprotonation of the thiourea macrocyclic host in positive polarity ionization and subsequently how charge isomerism due to cation (zinc metal) and anion (chloride counterion) adduction or proton competition among acceptors can affect the measured collisional cross sections in helium and nitrogen buffer gases. Our approach uses synthetic chemistry to design macrocycle targets and a combination of ion-mobility spectrometry mass spectrometry experiments and quantum mechanics calculations to characterize their structural properties. We demonstrate that charge isomerism significantly improves ion-mobility resolution and allows for determination of the metal binding mechanism in metal-inclusion macrocyclic complexes. Additionally, charge isomers can be populated in molecules where individual protons are shared between acceptors. In these cases, interactions via drift gas collisions magnify the conformational differences. Finally, for the macrocyclic systems we report here, charge isomers are observed in both helium and nitrogen drift gases with similar resolution. The separation factor does not simply increase with increasing drift gas polarizability. Our study sheds light on important properties of charge isomerism and offers strategies to take advantage of this phenomenon in analytical separations.


Assuntos
Hélio , Xilenos , Ânions , Isomerismo , Metais/química , Nitrogênio/química , Prótons , Zinco
5.
Phys Chem Chem Phys ; 23(41): 23953-23960, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34661219

RESUMO

Absorption of electronic acceptors in the accessible channels of an assembled triphenylamine (TPA) bis-urea macrocycle 1 enabled the study of electron transfer from the walls of the TPA framework to the encapsulated guests. The TPA host is isoskeletal in all host-guest structures analyzed with guests 2,1,3-benzothiadiazole, 2,5-dichlorobenzoquinone and I2 loading in single-crystal-to-single-crystal transformations. Analysis of the crystal structures highlights how the spatial proximity and orientation of the TPA host and the entrapped guests influence their resulting photophysical properties and allow direct comparison of the different donor-acceptor complexes. Diffuse reflectance spectroscopy shows that upon complex formation 1·2,5-dichlorobenzoquinone exhibits a charge transfer (CT) transition. Whereas, the 1·2,1,3-benzothiadiazole complex undergoes a photoinduced electron transfer (PET) upon irradiation with 365 nm LEDs. The CT absorptions were also identified with the aid of time dependent density functional theory (TD-DFT) calculations. Cyclic voltammetry experiments show that 2,1,3-benzothiadiazole undergoes reversible reduction within the host-guest complex. Moreover, the optical band gaps of the host 1·2,5-dichlorobenzoquinone (1.66 eV), and host 1·2,1,3-benzothiadiazole (2.15 eV) complexes are significantly smaller as compared to the free host 1 material (3.19 eV). Overall, understanding this supramolecular electron transfer strategy should pave the way towards designing lower band gap inclusion complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA