Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e24106, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38268576

RESUMO

A cropping system that is based on three or four crops is currently a widely favored option for augmenting crop productivity to address the escalating global food demand. However, the improper fertilizer management and undue tillage adversely impacts both the productivity of crops and the fertility of the soil. A research investigation was conducted on tillage and nutrient management within the mustard-mungbean-Transplanting aus (T.aus)-Transplanting aman (T.aman) cropping system to examine the impact of fertilizer packages and tillage techniques on the overall productivity of cropping systems, as well as the condition of the soil in grey terrace soil. The research included tillage techniques viz; minimum tillage (MT), conventional tillage (CT) and deep tillage (DT); while nutrient management; NM1: 100 % STB (Soil test based) following FRG (Fertilizer Recommendation Guide-2018), all from chemical fertilizer, NM2: 125 % of STB following FRG- 2018, all from chemical fertilizer, NM3: 100 % STB (80 % from chemical fertilizers and 20 % from cowdung), and NM4: Native fertility (no fertilization). A total of twelve treatments replicated three times following the factorial completely randomized design for three consecutive seasonal years (2018-19, 2019-20, and 2020-21). MT outperformed DT and CT in terms of crop yield, rice equivalent yield (REY), system productivity (SP), and production efficiency (PE). Moreover, NM3 exhibited enhanced performance in terms of agricultural productivity measures. Field capacity (FC), soil organic matter (OM), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and soil nutrients (N, P, K, S, Zn and B) observed an enhancement as a result of the implementation of tillage MT and nutrition package NM3. The investigation indicates that implementing minimum tillage (MT) coupled with an integrated plant nutrition system package (NM3) can assist in the improvement of soil and the enhancement of crop productivity.

2.
Heliyon ; 9(7): e18203, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519685

RESUMO

A study was carried out in five sweet potato growing regions of Bangladesh, each characterized by suitable agro-ecologies, in order to demonstrate the most favorable varietal performance and trait correlations. A completely randomized block design with three replications was used to compare the varietal performance of BARI (Bangladesh Agricultural Research Institute) released sweet potato varieties (viz. BARI Mistialu-9, BARI Mistialu-10, BARI Mistialu-12, BARI Mistialu-15 and BARI Mistialu-17). During the 2021-22 cropping season, sweet potato varieties were tested in five districts of Bangladesh, namely Gazipur, Bogura, Jamalpur, Jashore, and Chattogram. The findings revealed that the BARI Mistialu-12 variety exhibited remarkable attributes, including a high marketable storage root yield of 39.88 t/ha. Additionally, it demonstrated exceptional performance in various yield components such as vine length, average storage root weight, and dry weight of the root. Furthermore, a positive correlation was observed between several traits and yield, as well as yield-attributing characteristics. This correlation suggests that enhancing these traits could potentially contribute to an overall increase in the storage root yield of sweet potatoes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA