Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12368, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811671

RESUMO

Iron, a crucial micronutrient, is an integral element of biotic vitality. The scarcity of iron in the soil creates agronomic challenges and has a detrimental impact on crop vigour and chlorophyll formation. Utilizing iron oxide nanoparticles (IONPs) via nanopriming emerges as an innovative method to enhance agricultural efficiency and crop health. The objective of this study was to synthesize biogenic IONPs from Glycyrrhiza glabra (G. glabra) plant extract using green chemistry and to evaluate their nanopriming effects on rice seed iron levels and growth. The synthesized IONPs were analyzed using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDX) techniques. The UV-Vis peak at 280 nm revealed the formation of IONPs. SEM and TEM showed that the nanoparticles were spherical and had an average diameter of 23.8 nm. Nanopriming resulted in a substantial enhancement in growth, as seen by a 9.25% and 22.8% increase in shoot lengths for the 50 ppm and 100 ppm treatments, respectively. The yield metrics showed a positive correlation with the concentrations of IONPs. The 1000-grain weight and spike length observed a maximum increase of 193.75% and 97.73%, respectively, at the highest concentration of IONPs. The study indicates that G. glabra synthesized IONPs as a nanopriming agent significantly increased rice seeds' growth and iron content. This suggests that there is a relationship between the dosage of IONPs and their potential for improving agricultural biofortification.


Assuntos
Biofortificação , Glycyrrhiza , Oryza , Sementes , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/química , Glycyrrhiza/química , Glycyrrhiza/crescimento & desenvolvimento , Glycyrrhiza/metabolismo , Extratos Vegetais/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Química Verde/métodos , Ferro/metabolismo , Ferro/química , Compostos Férricos/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Chemosphere ; 340: 139827, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586493

RESUMO

Advanced materials for the efficient treatment of textile wastewater need to be developed for the sustainable growth of the textile industry. In this study, graphene oxide (GO) was modified by the incorporation of natural clay (bentonite) and mixed metal oxide (copper-cobalt oxide) to produce GO-based binary and ternary composites. Two binary composites, GO/bentonite and GO/Cu-Co Ox (oxide), and one ternary composite, GO/bentonite/Cu-Co Ox, were characterized by Fourier transform-infrared spectroscopy (FTIR), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and Brunauer-Emmett-Teller (BET) analysis. The adsorption efficiency of these composites was evaluated against a cationic dye, Basic Blue 41 (BB41). The composites had several surface functional groups, and the ternary composite had tubular porous structures formed by the cross-linking of the bentonite and GO planes. The BET surface area of the ternary composite was 50% higher than that of the GO. The BB41 removals were 92, 89, 80, and 69% for GO/bentonite/Cu-Co oxide, GO/bentonite, GO and GO/Cu-Co oxide, respectively. The pseudo-2nd-order and intraparticle diffusion models best describe the kinetics results, indicating chemisorption and slow pore diffusion-controlled adsorption processes. The Langmuir isotherm-derived adsorption capacity of GO/bentonite/Cu-Co oxide was 351.1 mg/g, which was very close to the measured value. After five consecutive cycles, the ternary composite retained 90% BB41 removal efficiency compared to its 1st cycle. Electrostatic interaction and pore diffusion were predicted to be the controlling mechanisms for the adsorption of the BB41. The GO-based ternary composite can be a feasible and scalable adsorbent for BB41 in wastewater treatment.


Assuntos
Grafite , Poluentes Químicos da Água , Cobre/química , Bentonita , Óxidos , Grafite/química , Adsorção , Poluentes Químicos da Água/análise , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Heliyon ; 9(6): e16506, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484277

RESUMO

Heterogeneous photocatalysis has been considered one of the most effective and efficient techniques to remove organic contaminants from wastewater. The present work was designed to examine the photocatalytic performance of metal (Cu and Ni) doped ZnO nanocomposites in methyl orange (MO) dye degradation under UV light illumination. The wurtzite hexagonal structure was observed for both undoped/doped ZnO and a crystalline size ranging between 8.84 ± 0.71 to 12.91 ± 0.84 nm by X-ray diffraction (XRD) analysis. The scanning electron microscope (SEM) and energy dispersive X-ray (EDX) revealed the irregular spherical shape with particle diameter (34.43 ± 6.03 to 26.43 ± 4.14 nm) and ensured the purity of the individual elemental composition respectively. The chemical bonds (O-H group) and binding energy (1021.8 eV) were identified by Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) results respectively. The bandgap energy was decreased from 3.44 to 3.16 eV when Ni dopant was added to the ZnO lattice. The comparative photocatalytic activity was observed in undoped and doped nanocomposites and found to be 76.31%, 81.95%, 89.30%, and 83.39% for ZnO, Cu/ZnO, Ni/ZnO, and Cu/Ni/ZnO photocatalysts, respectively, for a particular dose (0.210 g) and dye concentration (10 mg L-1) after 180 min illumination of UV light. The photocatalytic performance was increased up to 94.40% with the increase of pH (12.0) whereas reduced (35.12%) with an increase in initial dye concentration (40 mg L-1) using Ni/ZnO nanocomposite. The Ni/ZnO nanocomposite showed excellent reusability and was found 81% after four consecutive cycles. The best-fitted reaction kinetics was followed by pseudo-first-order and found reaction rate constant (0.0117 min-1) using Ni/ZnO nanocomposite. The enhanced photodegradation efficiency was observed due to decreases in bandgap energy and the crystalline size of the photocatalyst. Therefore, Ni/ZnO nanocomposite could be used as an emerging photocatalyst to degrade bio-persistent organic dye compounds from textile wastewater.

4.
Sci Rep ; 13(1): 9679, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322139

RESUMO

Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989.


Assuntos
Nanofibras , Análise dos Mínimos Quadrados , Aprendizado de Máquina , Simulação por Computador , Membranas
5.
Membranes (Basel) ; 13(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37233551

RESUMO

A microbial fuel cell (MFC) is a system that can generate electricity by harnessing microorganisms' metabolic activity. MFCs can be used in wastewater treatment plants since they can convert the organic matter in wastewater into electricity while also removing pollutants. The microorganisms in the anode electrode oxidize the organic matter, breaking down pollutants and generating electrons that flow through an electrical circuit to the cathode compartment. This process also generates clean water as a byproduct, which can be reused or released back into the environment. MFCs offer a more energy-efficient alternative to traditional wastewater treatment plants, as they can generate electricity from the organic matter in wastewater, offsetting the energy needs of the treatment plants. The energy requirements of conventional wastewater treatment plants can add to the overall cost of the treatment process and contribute to greenhouse gas emissions. MFCs in wastewater treatment plants can increase sustainability in wastewater treatment processes by increasing energy efficiency and reducing operational cost and greenhouse gas emissions. However, the build-up to the commercial-scale still needs a lot of study, as MFC research is still in its early stages. This study thoroughly describes the principles underlying MFCs, including their fundamental structure and types, construction materials and membrane, working mechanism, and significant process elements influencing their effectiveness in the workplace. The application of this technology in sustainable wastewater treatment, as well as the challenges involved in its widespread adoption, are discussed in this study.

6.
J Environ Manage ; 338: 117825, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031519

RESUMO

For several decades, water pollution has become a major threat to aquatic and non-aquatic species, including humans. Different treatment techniques have already been proposed and implemented depending on wastewater characteristics. But many of these treatment techniques are expensive and inefficient. Adsorption-based techniques have shown impressive performances as an inexpensive treatment method previously. Coconut-based resources have been considered as adsorbents for wastewater treatment because of their abundance, low cost, and favorable surface properties. However, over the last decade, no comprehensive study has been published regarding biochar from coconut-based materials for wastewater treatment and CO2 capture. This review discusses biochar production technology for coconut-based materials, its modification and characterization, its utilization as an adsorbent for removing metals and organics from wastewater, and the associated removal mechanisms and the economic aspects of coconut-based biochar. Coconut-based materials are cheap and effective for removing various organic compounds such as pesticides, hormones, phenol, and phenolic compounds from solutions and capturing CO2 from air mainly through the pore-filling mechanism. Utilizing coconut-based biochars in a hybrid system that combines adsorption and other techniques, such as biotechnology or chemical coagulation is a promising way to increase their performance as an adsorbent in wastewater treatment.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Purificação da Água , Humanos , Adsorção , Dióxido de Carbono , Carvão Vegetal/química , Cocos/química , Fenóis , Porosidade , Águas Residuárias , Poluentes Químicos da Água/química , Purificação da Água/métodos
7.
Membranes (Basel) ; 13(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36837685

RESUMO

The advancement in water treatment technology has revolutionized the progress of membrane bioreactor (MBR) technology in the modern era. The large space requirement, low efficiency, and high cost of the traditional activated sludge process have given the necessary space for the MBR system to come into action. The conventional activated sludge (CAS) process and tertiary filtration can be replaced by immersed and side-stream MBR. This article outlines the historical advancement of the MBR process in the treatment of industrial and municipal wastewaters. The structural features and design parameters of MBR, e.g., membrane surface properties, permeate flux, retention time, pH, alkalinity, temperature, cleaning frequency, etc., highly influence the efficiency of the MBR process. The submerged MBR can handle lower permeate flux (requires less power), whereas the side-stream MBR can handle higher permeate flux (requires more power). However, MBR has some operational issues with conventional water treatment technologies. The quality of sludge, equipment requirements, and fouling are major drawbacks of the MBR process. This review paper also deals with the approach to address these constraints. However, given the energy limitations, climatic changes, and resource depletion, conventional wastewater treatment systems face significant obstacles. When compared with CAS, MBR has better permeate quality, simpler operational management, and a reduced footprint requirement. Thus, for sustainable water treatment, MBR can be an efficient tool.

8.
Sci Total Environ ; 871: 162083, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764546

RESUMO

COVID-19 has accelerated the generation of healthcare (medical) waste throughout the world. Developing countries are the most affected by this hazardous and toxic medical waste due to poor management systems. In recent years, Bangladesh has experienced increasing medical waste generation with estimated growth of 3 % per year. The existing healthcare waste management in Bangladesh is far behind the sustainable waste management concept. To achieve an effective waste management structure, Bangladesh has to implement life cycle assessment (LCA) and circular economy (CE) concepts in this area. However, inadequate data and insufficient research in this field are the primary barriers to the establishment of an efficient medical waste management systen in Bangladesh. This study is introduced as a guidebook containing a comprehensive overview of the medical waste generation scenario, management techniques, Covid-19 impact from treatment to testing and vaccination, and the circular economy concept for sustainable waste management in Bangladesh. The estimated generation of medical waste in Bangladesh without considering the surge due to Covid-19 and other unusual medical emergencies would be approximately 50,000 tons (1.25 kg/bed/day) in 2025, out of which 12,435 tons were predicted to be hazardous waste. However, our calculation estimated that a total of 82,553, 168.4, and 2300 tons of medical waste was generated only from handling of Covid patients, test kits, and vaccination from March 2021 to May 2022. Applicability of existing guidelines, and legislation to handle the current situation and feasibility of LCA on medical waste management system to minimize environmental impact were scrutinized. Incineration with energy recovery and microwave sterilization were found to be the best treatment techniques with minimal environmental impact. A circular economy model with the concept of waste minimizaton, and value recovery was proposed for sustainable medical waste management. This study suggests proper training on healthcare waste management, proposing strict regulations, structured research allocation, and implementation of public-private partnerships to reduce, and control medical waste generation for creating a sustainable medical waste management system in Bangladesh.


Assuntos
COVID-19 , Resíduos de Serviços de Saúde , Gerenciamento de Resíduos , Humanos , Animais , Bangladesh/epidemiologia , COVID-19/epidemiologia , Gerenciamento de Resíduos/métodos , Atenção à Saúde , Estágios do Ciclo de Vida
9.
RSC Adv ; 12(46): 29767-29776, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36321110

RESUMO

Traditional grass cloth has been used in China for a long time for the manufacturing of various household furnishing textiles and ladieswear. However, traditionally the grass cloth is dyed with reactive dyes in an aqueous medium, but the dyeing process is not sustainable because of high energy and water usage and the production of coloured effluent. In this work, the possibility of palm oil/water dual-phase dyeing of traditional grass cloth with a reactive dye, C.I. Reactive Blue 194 (Reactive Blue 194), was explored. The grass cloth soaked in an alkaline solution with 80-140% pick-up was dyed in a palm oil dyebath containing dye powder dispersed in a palm oil medium. The initial study confirmed that the pre-treatment of the fabric with an alkaline solution with 140% pick-up was beneficial for the uniform distribution of the dye in the fibres. The dyeing process parameters (e.g., fixation temperature, solution pH, and fixation time) for the grass cloth dyeing with the Reactive Blue 194 were optimised by using the Taguchi method. The pH of the alkali pre-treatment solution was found to be the most influential factor, as confirmed by the analysis of variance in terms of the percentage of contribution (94.41%), which was statistically significant (P < 0.05). The confirmation tests were carried out under optimal settings, and a higher K/S (24.06) was found compared with the initial condition (21.51). X-ray diffraction analysis indicated that the dyeing process did not affect the crystallinity of the grass cloth fibres. Furthermore, the recovery of palm oil from the spent dyebath was around 99%, and up to five times recycling and reuse of palm oil were studied for the dyeing of grass cloth. The colour strength of the grass cloths dyed in the palm oil recycled up to five times was similar to the cloth dyed in fresh palm oil. The results show that palm oil can be used as a dyeing medium for the sustainable dyeing of grass cloth with effluent reduction, which can be extended to the dyeing of other textile fibres.

10.
Heliyon ; 8(8): e10176, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36033268

RESUMO

The wastewater generated from textile industries is highly colored and contains dyes including azo dyes, which are toxic to human and water-living organisms. The treatment of these azo dyes using conventional treatment techniques is challenging due to their recalcitrant properties. In the current study, the effect of additional Fe2+ on electrocoagulation (EC) using Fe electrodes has been studied for the removal of methyl orange (MO) azo dye. pH between 4-5 was found to be optimum for EC and treatment efficiency decreased with increasing dye concentrations. With the addition of Fe2+ salt, dye removal for a certain concentration was increased with the increase of current density and Fe2+ up to a certain limit and after that, the removal efficiency decreased. The COD, color and dye removals were 88.5%, 93.1% and 100%, respectively, for EC of 200 mg.L-1 dye solution using only 0.20 mmol.L-1 Fe2+ for 0.40 mA cm-2 current density, whereas for EC, the respective removal efficiencies were 76.7%, 63.4% and 82.4% for 32 min. The respective operating cost for EC was $768 kg-1 removed dye ($0.342 m-3), whereas, for EC with additional Fe2+ salt, it was $350 kg-1 removed dye ($0.189 m-3). The kinetic results revealed that the first-order kinetic model was fitted best for EC, whereas the second-order kinetic model was best fitted for Fe2+ added EC. For real textile wastewater, 57.6% COD removal was obtained for 0.15 mmol.L-1 Fe2+ added EC compared to 27.8% COD removal for EC for 32 min. Based on the study we can conclude that Fe2+ assisted EC can be used for effective treatment of textile wastewater containing toxic compounds like azo dyes.

11.
Heliyon ; 8(7): e09802, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35815143

RESUMO

Electronic waste (e-waste) contains a variety of electronic components e.g., metals, non-metals, plastics, cables, etc. The excessive generation of e-waste has become a significant concern in the last few decades. The current global e-waste generation is 57.4 million metric tons (MMT) per year. Asia produces the highest amount of e-waste (24.9 MMT) followed by America, Europe, Africa, and Oceania. In Bangladesh, e-waste produces from two sources: its own consumption of electronic devices, which is 0.6 MMT, and imported e-waste from ship breaking yards that is 2.5 MMT in 2021. However, inadequate information on the current state of e-waste generation and management systems in Bangladesh has created a void to establish the future direction for proper handling of e-waste. In this work, the Bangladesh perspective of e-waste has been analyzed. The environmental, health economical forfeiture of e-waste has been discussed. The development of government legislations regarding e-waste have been stated. The establishment of e-waste management has been designed by the life cycle assessment (LCA) and material flow analysis (MFA) models. Moreover, a holistic approach for understanding the possible hazards, the economic feasibility of e-waste processing and viable management models for e-waste in Bangladesh was endeavored in this work to propose systematic future directions and recommendations to improve the current e-waste scenario of Bangladesh.

12.
Environ Pollut ; 281: 117094, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848767

RESUMO

The effectiveness of biochar as a sorptive material to remove contaminants, particularly heavy metals, from water is dependent on biomass type and pyrolysis condition. Biochars were produced from pulp mill sludge (PMS) and rice straw (RS) with nitrogen (N2) or carbon dioxide (CO2) as the purging gas. The sorptive capacity of the biochars for cadmium(II), copper(II), nickel(II) and lead(II) was studied. The heavy metal adsorption capacity was mainly affected by biomass type, with biochars adsorption capacities higher for lead(II) (109.9-256.4 mg g-1) than for nickel(II) (40.2-64.1 mg g-1), cadmium(II) (29.5-42.7 mg g-1) and copper(II) (18.5-39.4 mg g-1) based on the Langmuir adsorption model. The highest lead(II) adsorption capacities for PMS and RS biochars were 256.4 and 133.3 mg g-1, respectively, when generated using N2 as the purging gas. The corresponding lead(II) adsorption capacities were 250.0 and 109.9 mg g-1, respectively, when generated using CO2 as the purging gas. According to the intraparticle diffusion model, 30-62% of heavy metal adsorption was achieved in 1 h; film diffusion was the rate-dominating step, whereas pore diffusion was a rate-limiting step. Ion exchange and complexation between heavy metals and biochar surface functional groups such as carbonyl and hydroxyl groups were effective mechanisms for heavy metal sorption from the aqueous solution. We conclude that proper selection of both the feedstock type and the purging gas is important in designing biochars for the effective removal of potentially toxic metals from wastewater.


Assuntos
Metais Pesados , Pirólise , Adsorção , Carvão Vegetal , Água
13.
Bioresour Technol ; 309: 123390, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32325379

RESUMO

The effectiveness of the modification of wheat straw biochar using FeCl3 and HCl, alone or combined, on ammonium adsorption was evaluated using kinetic and isotherm models. The adsorption mechanisms were studied by comparative analysis of the surface properties of the biochars before and after ammonium adsorption. The results indicate that the modification methods enhanced the ammonium adsorption capacity by at least 14%, due to the increased OH and OCO functional groups and specific surface area, and increased Fe3+/Fe2+ redox coupling serving as an electron shuttle. It can be concluded that chemical modification of wheat straw biochars using FeCl3 and HCl increased the effectiveness of biochars for the treatment of ammonium-contaminated wastewater.


Assuntos
Compostos de Amônio , Adsorção , Carvão Vegetal , Ácido Clorídrico , Ferro
14.
Sci Total Environ ; 712: 136538, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050382

RESUMO

Biochar is a promising material for efficient removal of toxic metals from wastewater to meet standards for discharge into surface water. We characterized adsorption behaviour of willow (Salix alba) wood (WW) and cattle manure (CM) and their biochars, willow wood biochar (WWB) and cattle manure biochar (CMB), and elucidated the mechanisms for the removal of Ni(II), Cu(II) and Cd(II) from aqueous solutions. The kinetic adsorption suggests that the adsorption of Ni(II), Cu(II) and Cd(II) by feedstock and their biochars was controlled by mass transport, and chemisorption also played a role in the adsorption process. The Elovich model also well described the adsorption kinetics for WW and CM (R2 > 0.92), indicating that heterogeneous diffusion was the mechanism. The Sips isotherm model fitted best (R2 > 0.98) for Ni(II), Cu(II) and Cd(II) adsorption by the feedstocks and their biochars, indicating that both monolayer and multilayer adsorption played roles on the heterogeneous surfaces of the four adsorbents. The WWB had a higher while the CMB had a lower adsorption capacity than their respective feedstock due to the presence of abundant -COOH functional group on WWB surface to interact with Ni(II), Cu(II) and Cd(II) to form surface complexes. The higher specific surface area and lower pH of point of zero charge (PZC) of WWB were other contributing factors for its greater removal capacity. Therefore, we conclude that proper feedstocks need to be selected to produce biochars that are efficient for the removal of toxic metals from wastewater.


Assuntos
Carvão Vegetal/química , Adsorção , Animais , Cádmio , Bovinos , Cobre , Cinética , Níquel , Águas Residuárias
15.
Chemosphere ; 231: 393-404, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31146131

RESUMO

Biochar is a promising material for facilitating the reclamation of oil sands process water (OSPW); however, how biochar properties can be optimized for metal removal from OSPW is not well studied. This study was conducted to determine relationships among feedstock type, pyrolysis condition, biochar property, and lead(II) adsorption capacity to demonstrate the potential use of biochar for metal removal from a synthetic OSPW. Sawdust, canola and wheat straw, and manure pellet were pyrolyzed at 300, 500, and 700 °C, with or without steam activation. Increasing pyrolysis temperature increased, with a few exceptions, biochar pH, surface area, and carbon content, but decreased hydrogen and oxygen contents and surface functional groups. Steam activation increased surface area but did not affect other properties. For non-steam-activated biochars, canola and wheat straw biochars produced at 700 °C had the highest lead(II) adsorption capacity (Qmax_Pb), at 108 and 109 mg g-1, respectively. Increasing the pyrolysis temperature increased Qmax_Pb due to increased biochar pH, ash content, and surface area by increasing precipitation, ion exchange, and inner-sphere complexation of lead(II). Steam activation increased lead(II) adsorption capacity for most biochars mainly due to the increased surface area, with the highest Qmax_Pb at 195 mg g-1 for canola straw biochar pyrolyzed at 700 °C with steam activation. The adsorption with time followed a pseudo-second order kinetic model. The results of this study will help select most effective biochars that can be produced from locally available agricultural or forestry byproducts that are optimized for metal removal from synthetic OSPW.


Assuntos
Carvão Vegetal/química , Chumbo/química , Modelos Químicos , Adsorção , Agricultura , Carbono/análise , Chumbo/análise , Esterco/análise , Campos de Petróleo e Gás , Pirólise , Vapor , Temperatura , Triticum/química , Madeira/química
16.
Chemosphere ; 202: 716-725, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29604558

RESUMO

The production of oil from oil sands in northern Alberta has led to the generation of large volumes of oil sands process-affected water (OSPW) that was reported to be toxic to aquatic and other living organisms. The toxicity of OSPW has been attributed to the complex nature of OSPW matrix including the inorganic and organic compounds primarily naphthenic acids (NAs: CnH2n+ZOx). In the present study, granular activated carbon (GAC) adsorption was investigated for its potential use to treat raw and ozonated OSPW. The results indicated that NA species removal increased with carbon number (n) for a fixed Z number; however, the NA species removal decreased with Z number for a fixed carbon number. The maximum adsorption capacities obtained from Langmuir adsorption isotherm based on acid-extractable fraction (AEF) and NAs were 98.5 mg and 60.9 mg AEF/g GAC and 60 mg and 37 mg NA/g GAC for raw and ozonated OSPW, respectively. It was found that the Freundlich isotherm model best fits the AEF and NA equilibrium data (r2 ≥ 0.88). The adsorption kinetics showed that the pseudo-second order and intraparticle diffusion models were both appropriate in modeling the adsorption kinetics of AEF and NAs to GAC (r2 ≥ 0.97). Although pore diffusion was the rate limiting step, film diffusion was still significant for assessing the rate of diffusion of NAs. This study could be helpful to model, design and optimize the adsorption treatment technologies of OSPW and to assess the performance of other adsorbents.


Assuntos
Carvão Vegetal/química , Campos de Petróleo e Gás/química , Compostos Orgânicos/química , Poluentes Químicos da Água/química , Adsorção , Alberta , Recuperação e Remediação Ambiental , Cinética
17.
J Environ Manage ; 198(Pt 1): 300-307, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28477571

RESUMO

Biological phosphorous (P) and nitrogen (N) removal from municipal wastewater was studied using an innovative anoxic-aerobic-anaerobic side-stream treatment system. The impact of influent water quality including chemical oxygen demand (COD), ammonium and orthophosphate concentrations on the reactor performance was evaluated. The results showed the system was very effective at removing both COD (>88%) and NH4+-N (>96%) despite varying influent concentrations of COD, NH4+-N, and total PO43--P. In contrast, it was found that the removal of P was sensitive to influent NH4+-N and PO43--P concentrations. The maximum PO43--P removal of 79% was achieved with the lowest influent NH4+-N and PO43--P concentration. Quantitative PCR (qPCR) assays showed a high abundance and diversity of phosphate accumulating organisms (PAO), nitrifiers and denitrifiers. The MiSeq microbial community structure analysis showed that the Proteobacteria (especially ß-Proteobacteria, and γ-Proteobacteria) were the dominant in all reactors. Further analysis of the bacteria indicated the presence of diverse PAO genera including Candidatus Accumulibacter phosphatis, Tetrasphaera, and Rhodocyclus, and the denitrifying PAO (DPAO) genus Dechloromonas. Interestingly, no glycogen accumulating organisms (GAOs) were detected in any of the reactors, suggesting the advantage of proposed process in term of PAO selection for enhanced P removal compared with conventional main-stream processes.


Assuntos
Reatores Biológicos , Fósforo , Betaproteobacteria , Rios , Águas Residuárias , Purificação da Água
18.
Chemosphere ; 180: 149-159, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28402833

RESUMO

Ozonation at high doses is a costly treatment for oil sands process-affected water (OSPW) naphthenic acids (NAs) degradation. To decrease costs and limit doses, different peroxone (hydrogen peroxide/ozone; H2O2:O3) processes using mild-ozone doses of 30 and 50 mg/L were investigated. The degradation efficiency of Ox-NAs (classical (O2-NAs) + oxidized NAs) improved from 58% at 30 mg/L ozone to 59%, 63% and 76% at peroxone (1:1), 50 mg/L ozone, and peroxone (1:2), respectively. Suppressing the hydroxyl radical (•OH) pathway by adding tert-butyl alcohol did significantly reduce the degradation in all treatments, while molecular ozone contribution was around 50% and 34% for O2-NAs and Ox-NAs, respectively. Structure reactivity toward degradation was observed with degradation increase for both O2-NAs and Ox-NAs with increase of both carbon (n) and hydrogen deficiency/or |-Z| numbers in all treatments. However, the combined effect of n and Z showed specific insights and differences between ozone and peroxone treatments. The degradation pathway for |-Z|≥10 isomers in ozone treatments through molecular ozone was significant compared to •OH. Though peroxone (1:2) highly reduced the fluorophore organics and toxicity to Vibrio fischeri, the best oxidant utilization in the degradation of O2-NAs (mg/L) per ozone dose (mg/L) was observed in the peroxone (1:1) (0.91) and 30 mg/L ozone treatments (0.92). At n = 9-11, peroxone (1:1) had similar or enhanced effect on the O2-NAs degradation compared to 50 mg/L ozone. Enhancing •OH pathway through peroxone versus ozone may be an effective OSPW treatment that will allow its safe release into receiving environments with marginal cost addition.


Assuntos
Ácidos Carboxílicos/química , Modelos Químicos , Ozônio/química , Poluentes Químicos da Água/química , Aliivibrio fischeri , Carbono , Peróxido de Hidrogênio/química , Radical Hidroxila , Campos de Petróleo e Gás , Processos Fotoquímicos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , terc-Butil Álcool
19.
Sci Total Environ ; 541: 238-246, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410699

RESUMO

Naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) have known environmental toxicity and are resistant to conventional wastewater treatments. The granular activated carbon (GAC) biofilm treatment process has been shown to effectively treat OSPW NAs via combined adsorption/biodegradation processes despite the lack of research investigating their individual contributions. Presently, the NAs removals due to the individual processes of adsorption and biodegradation in OSPW bioreactors were determined using sodium azide to inhibit biodegradation. For raw OSPW, after 28 days biodegradation and adsorption contributed 14% and 63% of NA removal, respectively. For ozonated OSPW, biodegradation removed 18% of NAs while adsorption reduced NAs by 73%. Microbial community 454-pyrosequencing of bioreactor matrices indicated the importance of biodegradation given the diverse carbon degrading families including Acidobacteriaceae, Ectothiorhodospiraceae, and Comamonadaceae. Overall, results highlight the ability to determine specific processes of NAs removals in the combined treatment process in the presence of diverse bacteria metabolic groups found in GAC bioreactors.


Assuntos
Biofilmes , Ácidos Carboxílicos/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Carvão Vegetal/química , Campos de Petróleo e Gás , Águas Residuárias/química
20.
J Environ Manage ; 152: 49-57, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25617868

RESUMO

Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs.


Assuntos
Ácidos Carboxílicos/química , Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Poluição por Petróleo/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Alberta , Aliivibrio fischeri/efeitos dos fármacos , Biodegradação Ambiental , Hidrocarbonetos/química , Águas Residuárias/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA