Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(13): e33224, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027546

RESUMO

Photonic Crystal Fibers (PCF) effectiveness in practice decreases if the fabrication of the sensor becomes too complex. Keeping this in mind, we propose a one-of-a-kind wheel shaped PCF sensor with an exposed core containing only three air holes with exceptional sensing features. The sensor is equipped with dual plasmonic layers, Indium Tin Oxide (ITO, 10 % wt) and silver (Ag) with a coating of TiO2 to enhance the sensing capabilities and provide protection against oxidation. The sensor's distinctive configuration enables it to exhibit two distinct peaks within a range of refractive index from 1.32 to 1.38 for y-polarization and from 1.35 to 1.38 for x-polarization. The sensor specifications have been optimized to achieve the maximum levels of wavelength sensitivity (WS) and double peak shift sensitivity (DPSS). The sensor portrays a WS of 50,652 nm/RIU and the highest DPSS ever recorded, measuring 50,000 nm/RIU. Additionally, the sensor exhibits a significantly high scale of amplitude sensitivity (AS) of 1668.34 RIU-1 which is a very remarkable value considering silver as plasmonic material along with an outstanding figure of merit (FOM) of 1017.11 RIU-1. In addition, our sensor is able to manifest resolutions in the order of 10-6, demonstrating a resolution of 5.94 × 10-6 RIU with the deployment of amplitude interrogation method and 1.97 × 10-6 RIU with the wavelength interrogation method. The design spans an extensive spectrum, covering ultraviolet to mid-infrared wavelengths, enabling detection of biomolecules and biochemicals, along with operation in the optical communication band.

2.
Materials (Basel) ; 17(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612102

RESUMO

Low fiber-direction compressive strength is a well-recognized weakness of carbon fiber-reinforced polymer (CFRP) composites. When a CFRP is produced using 3D printing, the compressive strength is further degraded. To solve this issue, in this paper, a novel magnetic compaction force-assisted additive manufacturing (MCFA-AM) method is used to print CFRP laminates reinforced with carbon nanofiber (CNF) z-threads (i.e., ZT-CFRP). MCFA-AM utilizes a magnetic force to simultaneously levitate, deposit, and compact fast-curing CFRP prepregs in free space and quickly solidifies the CFRP laminate part without any mold nor supporting substrate plate; it effectively reduces the voids. The longitudinal compressive test was performed on five different sample types. ZT-CFRP/MCFA-AM samples were printed under two different magnetic compaction rolling pressures, i.e., 0.5 bar and 0.78 bar. Compared with the longitudinal compressive strength of a typical CFRP manufactured by the traditional out-of-autoclave-vacuum-bag-only (OOA-VBO) molding process at the steady-state pressure of 0.82 bar, the ZT-CFRP/MCFA-AM samples showed either comparable results (by -1.00% difference) or enhanced results (+7.42% improvement) by using 0.5 bar or 0.78 bar magnetic rolling pressures, respectively.

3.
Heliyon ; 9(8): e18782, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560693

RESUMO

This paper introduces a comprehensive study of a quad-cluster multi-functional Photonic Crystal Fiber (PCF) sensor where gold and Aluminum doped with zinc oxide (AZO) were used as plasmonic materials. A maximum Amplitude Sensitivity (AS) of 5336 RIU-1 and Wavelength Sensitivity (WS) of 40,500 nm/RIU in y pol was obtained incorporating Gold as plasmonic material. When AZO was included as the plasmonic material, AS of 3763 RIU-1 & WS of 9100 nm/RIU for y polarization were determined. The RI detecting range was increased from 1.32 to 1.43 to 1.19-1.42 after using AZO instead of Au that opens up a new horizon for detection. A novel detection technique, 'Double Step Dual Peak Shift Sensitivity (DS-DPSS)' was proposed in sensing temperature where highest sensitivity of 1.05 nm/°C having resolution of 0.095 °C for x pol. was achieved. Due to its diverse functionality, the suggested sensor represents a significant advancement in the detection of numerous analytes in biochemical applications.

4.
Appl Phys A Mater Sci Process ; 127(5): 311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33840912

RESUMO

In this paper, a wheel structured Zeonex-based hexagonal packing photonic crystal fiber (PCF) sensor has been proposed for sensing camel milk with a refractive index of 1.3423 and cow milk with a refractive index of 1.3459. This sensor has been investigated for porosities of 85%, 90%, and 98% within a terahertz (THz) region ranging from 0.2 to 2.0 THz. At an operating frequency of 2 THz, this sensor has shown a maximum sensitivity of 81.16% and 81.32% for camel and cow milk, respectively. EML of 0.033013 cm-1 and 0.03284 cm-1 has been found for camel and cow milk, respectively, at the same operating conditions with negligible confinement losses of 8.675 × 10-18 cm-1 1.435 × 10-18 cm-1. Several other parameters, such as the effective area, flattened dispersion, and numerical aperture, have also been obtained during the investigation. Since considerable attention has not been given yet in detecting various types of dairy products using PCF terahertz sensors, this design will pave a whole new path in further implementing THz sensing in the dairy industry.

5.
Appl Opt ; 57(4): 666-672, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400735

RESUMO

We report on the design, in-depth analysis, and characterization of a novel elliptical array shaped core rectangular shaped cladded photonic crystal fiber (PCF) for multichannel communication and polarization maintaining applications of terahertz waves. The asymmetrical structure of air holes in both core and cladding results in increased birefringence, while a compact geometry and different cladding air hole size makes the dispersion characteristic flat. The modal characteristics of the PCF are calculated using a finite element method. The simulated results show a near-zero dispersion flattened property of ±0.02 ps/THz/cm, high birefringence of 0.063, low effective material loss of 0.06 cm-1, and negligible confinement loss of 5.45×10-13 cm-1 in the terahertz frequency range. Additionally, the core power fraction, effective area, physical attributes, and potential fabrication possibilities of the fiber are discussed.

6.
Appl Opt ; 56(4): 1232-1237, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158138

RESUMO

In this paper, we present the design and analysis of a novel hybrid porous core octagonal lattice photonic crystal fiber for terahertz (THz) wave guidance. The numerical analysis is performed using a full-vector finite element method (FEM) that shows that 80% of bulk absorption material loss of cyclic olefin copolymer (COC), commercially known as TOPAS can be reduced at a core diameter of 350 µm. The obtained effective material loss (EML) is as low as 0.04 cm-1 at an operating frequency of 1 THz with a core porosity of 81%. Moreover, the proposed photonic crystal fiber also exhibits comparatively higher core power fraction, lower confinement loss, higher effective mode area, and an ultra-flattened dispersion profile with single mode propagation. This fiber can be readily fabricated using capillary stacking and sol-gel techniques, and it can be used for broadband terahertz applications.

7.
Sensors (Basel) ; 11(10): 9887-903, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163732

RESUMO

Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.


Assuntos
Algoritmos , Redes de Comunicação de Computadores/instrumentação , Eletrônica/instrumentação , Eletrônica/métodos , Tecnologia sem Fio/instrumentação , Análise por Conglomerados , Simulação por Computador , Razão Sinal-Ruído , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA