Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
J Trop Med ; 2024: 5594462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39380577

RESUMO

Quercetin, a major representative of the flavonol subclass found abundantly in almost all edible vegetables and fruits, showed remarkable therapeutic properties and was beneficial in numerous degenerative diseases by preventing lipid peroxidation. Quercetin is beneficial in different diseases, such as atherosclerosis and chronic inflammation. This study aims to find out the anticancer activities of quercetin and to determine different mechanisms and pathways which are responsible for the anticancer effect. It also revealed the biopharmaceutical, toxicological characteristics, and clinical utilization of quercetin to evaluate its suitability for further investigations as a reliable anticancer drug. All of the relevant data concerning this compound with cancer was collected using different scientific search engines, including PubMed, Springer Link, Wiley Online, Web of Science, SciFinder, ScienceDirect, and Google Scholar. This review demonstrated that quercetin showed strong anticancer properties, including apoptosis, inhibition of cell proliferation, autophagy, cell cycle arrest, inhibition of angiogenesis, and inhibition of invasion and migration against various types of cancer. Findings also revealed that quercetin could significantly moderate and regulate different pathways, including PI3K/AKT-mTORC1 pathway, JAK/STAT signaling system, MAPK signaling pathway, MMP signaling pathway, NF-κB pathway, and p-Camk2/p-DRP1 pathway. However, this study found that quercetin showed poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of quercetin). Moreover, different investigations revealed that quercetin expressed no toxic effect in the investigated subjects. Based on the view of these findings, it is demonstrated that quercetin might be considered a reliable chemotherapeutic drug candidate in the treatment of different cancers. However, more clinical studies are suggested to establish the proper therapeutic efficacy, safety, and human dose.

2.
Comput Biol Med ; 183: 109298, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39454522

RESUMO

The present work is designed to explore the anti-inflammatory properties of AA and its modulatory effects on celecoxib (CEL) and ketoprofen (KET) through in vitro, ex vivo, in vivo, and in silico approaches. Different concentrations of AA were utilized to evaluate the membrane-stabilizing potential via egg albumin and the Human Red Blood Cell (HRBC) denaturation model. In the animal model, formalin (50 µL) was injected into the right hind paw of young chicks to induce inflammation. AA was administered at 20 and 40 mg/kg (p.o.) to the experimental animals. We used CEL and KET as positive controls. The vehicle was provided as a control group. Two combinations of AA with CEL and KET were also investigated in all tests to assess the modulatory activity of AA. In addition, in silico investigation was used for predictions about drug-likeness, pharmacokinetics, and toxicity of the selected chemical compounds, and the study also evaluated the binding affinity, visualization, and stability of ligand-receptor interactions through molecular dynamic (MD) simulation. Results manifested that AA concentration-dependently significantly inhibited the egg albumin denaturation (IC50: 27.53 ± 0.88 µg/ml) and breakdown of HRBC (IC50: 15.69 ± 0.75 µg/ml), indicating the membrane stabilizing potential compared to the control group. AA also significantly (p < 0.05) lessened the frequency of licking and alleviated the paw edema in a dose-dependent manner in an in vivo test. However, AA reduced the activity of CEL and KET in combination treatment. AA showed good pharmacokinetic characteristics to be considered as a therapeutic candidate. Additionally, the in silico study displayed that AA demonstrated a relatively higher docking score of -9.1 kcal/mol with the cyclooxygenase-2 (COX-2) enzyme and stable binding in MD simulation. Whereas the standard ligand (CEL) expressed the highest binding value of -9.2 kcal/mol to the COX-2.

3.
ChemistryOpen ; : e202400290, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39460441

RESUMO

Anxiety is a natural response to stress, characterized by feelings of worry, fear, or unease. The current research was conducted to investigate the anxiolytic effect of indirubin (IND) in different behavioral paradigms in Swiss albino mice. To observe the animal's behavioural response to assess anxiolytic activity, different tests were performed, such as the open-field (square cross, grooming, and rearing), swing, dark-light, and hole cross tests. The experimental mice were administered IND (5 and 10 mg/kg, p.o.), where diazepam (DZP) and vehicle were used as positive and negative controls, respectively. In addition, a combination treatment (DZP+IND-10) was provided to the animals to determine the modulatory effect of IND on DZP. Molecular docking approach was also conducted to determine the binding energy of IND with the GABAA receptor (α2 and α3 subunits) and pharmacokinetics were also estimated. The findings revealed that IND dose-dependently significantly (p<0.05) reduced the animal's movement exerting calming behavior like DZP. IND also demonstrated the highest docking score (-7.7 kcal/mol) against the α3 subunit, while DZP showed a lower docking value (-6.4 kcal/mol) than IND. The ADMET analysis revealed that IND has proper drug-likeness and pharmacokinetic characteristics. In conclusion, IND exerted anxiolytic effects through GABAergic Pathways.

4.
Nat Prod Res ; : 1-16, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39390887

RESUMO

This study evaluates the anti-inflammatory effects of a natural product, piperine (PPN), using in vivo and in silico methodologies. In the in vivo segment, inflammation was induced in the right hind paw of young chicks via a formalin (50 µL) injection. PPN was orally administered at doses of 25 and 50 mg/kg with or without celecoxib (CXB) and/or ketoprofen (KPN) (42 mg/kg). The vehicle acted as the negative control group (NC). The in silico analysis predicted the drug-likeness, pharmacokinetics, and toxicity profile of PPN, along with evaluating its binding affinity and ligand-receptor interactions. Results indicate that PPN significantly (p < 0.05) reduced licking frequency and paw edoema in a dose-dependent manner. However, in combination therapy, PPN diminished the effects of both CXB and KPN. PPN showed high affinity (-8.6 kcal/mol) towards the COX-2 enzyme. Therefore, PPN exerts anti-inflammatory effects in chicks through COX-2 inhibition pathways and antagonises CXB and KPN activities.

5.
Drug Dev Res ; 85(6): e22259, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233388

RESUMO

Schizophrenia affects identification and disturbs our thinking and motivational capacity. Long-term use of daidzin (DZN) is evident to enhance attention and memory in experimental animals. This study aimed to investigate the effect of DZN on Swiss mice. To check animals' attention, identification, thinking, and motivational ability, we performed behavioral studies using marble burying, dust removal, and trained swimming protocols. For this, a total of 36 male Swiss albino mice were randomly divided into six groups, consisting of 6 animals in each group, as follows: control (vehicle), DZN-1.25, DZN-2.5, DZN-5 mg/kg, olanzapine (OLN)-2, and a combination of DZN-1.25 with OLN-2. Additionally, in silico studies are also performed to understand the possible molecular mechanisms behind this neurological effect. Findings suggest that DZN dose-dependently and significantly (p < .05) increased marble burying and removed dust while reducing the time to reach the target point. DZN-1.25 was found to enhance OLN's effect significantly (p < .05), possibly via agonizing its activity in animals. In silico findings suggest that DZN has strong binding affinities of -10.1 and -10.4 kcal/mol against human serotonin 2 A (5-HT2A) and dopamine 2 (D2) receptors, respectively. Additionally, DZN exhibits favorable pharmacokinetic and toxicity properties. We suppose that DZN may exert its attention- and memory-enhancing abilities by interacting with 5-HT2A and D2 receptors. It may exert a synergistic antischizophrenia-like effect with the standard drug, OLN. Further studies are required to discover the exact molecular mechanism for this neurological function in animals.


Assuntos
Antipsicóticos , Memória , Olanzapina , Receptor 5-HT2A de Serotonina , Receptores de Dopamina D2 , Animais , Olanzapina/farmacologia , Masculino , Camundongos , Memória/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Antipsicóticos/farmacologia , Receptor 5-HT2A de Serotonina/metabolismo , Simulação de Acoplamento Molecular , Comportamento Animal/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
6.
J Pharmacol Toxicol Methods ; 130: 107561, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326519

RESUMO

Dihydrocoumarin (DCN) is a natural compound widely used in the flavor industry and has antioxidant and anti-inflammatory properties. However, its potential antiemetic effects on gastrointestinal disturbances remain untested. This study emphasizes assessing the antiemetic properties of the natural aromatic compound DCN using copper sulfate (CuSO4.5H2O)-induced emetic model on chicks, and an in silico approach was also adopted to estimate the possible underlying mechanisms. Two doses (25 and 50 mg/kg b.w.) of DCN and several referral drugs considered positive controls (PCs), including domperidone (6 mg/kg), hyoscine (21 mg/kg), aprepitant (16 mg/kg), diphenhydramine (10 mg/kg), and ondansetron (5 mg/kg), were orally administered to chicks. The vehicle was provided as the control group. Co-treatments of DCN with referral drugs were also provided to chicks to evaluate the modulatory action of the test compound. According to the results, DCN delayed the emetic onset and decreased the frequency of retches in a dose-dependent manner compared to the vehicle group. DCN (50 mg/kg) represented a notable delayed latency period (61.17 ± 4.12 s) and a diminished number of retchings (17.67 ± 1.82 times) compared to the control group. Further, in the co-treatments, DCN increased the latency period and reduced the number of retches, except for domperidone. In the in silico investigation, DCN showed notable binding affinity toward the D2 (-7 kcal/mol), H1 (-7.5 kcal/mol), and M5 (-7 kcal/mol) receptors in the same binding site as the referral ligand. Our research indicates that DCN has mild antiemetic properties by interacting with the D2, H1, and M5 receptors. Therefore, several pre-clinical and clinical studies are necessary to assess the effectiveness and safety profile of this food ingredient.

7.
Chem Biodivers ; : e202401406, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103292

RESUMO

Toxicological studies are important to investigate the genotoxic effects of various substances. Allium cepa can be used as test model for this purpose. This review summarizes the scope and applications for this A. cepa test model. For this, an up-to-date (April 2023) literature search was made in the Science Direct, PubMed, and Web of Science databases to find published evidence on studies performed using A. cepa as a test model. Out of 3,748 studies, 74 fit the inclusion criteria. The results showed that the use of the test model A. cepa contributed considerably to measuring the toxicological potential of plant extracts, proving the efficacy of the test as a potent bioindicator of toxic effects. In addition, 27 studies used more than one test system to verify the toxicological potential of extracts and fractions. Studies have shown that the A. cepa model has the potential to replace other test systems that make use of animals and cell cultures, besides having other advantages such as low cost, ease of execution, and good conditions for the observation of chromosomes. In conclusion, the A. cepa test can be considered one of the potential biomonitoring systems in toxicological studies of crude extracts.

8.
Chem Biodivers ; : e202400874, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113595

RESUMO

This study evaluates the pharmacological effects of iridoid glucoside loganic acid, a plant constituent with diverse properties, based on literature, and explores the underlying cellular mechanisms for treating several ailments. Data were collected from reliable electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar, etc. The results demonstrated the anti-inflammatory, anti-oxidant, and other protective effects of loganic acid on metabolic diseases and disorders such as atherosclerosis, diabetes, and obesity, in addition to its osteoprotective and anticancer properties. The antioxidant activity of loganic acid demonstrates its capacity to protect cells from oxidative damage and mitigates inflammation by reducing the activity of inflammatory cytokines involving TNF-α and IL-6, substantially upregulating the expression of PPAR-γ/α, and decreasing the clinical signs of inflammation-related conditions related to hypertriglyceridemia and atherosclerosis. Meanwhile, loganic acid inhibits bone loss, exhibits osteoprotective properties by increasing mRNA expression levels of bone synthesizing genes such as Alpl, Bglap, and Sp7, and significantly increases osteoblastic proliferation in preosteoblast cells. Loganic acid is an anti-metastatic drug that reduces MnSOD expression, inhibits EMT and metastasis, and prevents cellular migration, proliferation, and invasion in hepatocellular carcinoma cells. However, additional clinical trials are required to assess its safety, efficacy, and human dose.

9.
Drug Dev Res ; 85(6): e22250, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39154218

RESUMO

Insomnia is a sleep disorder in which you have trouble falling and/or staying asleep. This research aims to evaluate the sedative effects of fraxin (FX) on sleeping mice induced by thiopental sodium (TS). In addition, a molecular docking study was conducted to investigate the molecular processes underlying these effects. The study used adult male Swiss albino mice and administered FX (10 and 20 mg/kg, i.p.) and diazepam (DZP) (2 mg/kg) either separately or in combination within the different groups to examine their modulatory effects. After a period of 30 min, the mice that had been treated were administered (TS: 20 mg/kg, i.p.) to induce sleep. The onset of sleep for the mice and the length of their sleep were manually recorded. Additionally, a computational analysis was conducted to predict the role of gamma-aminobutyric acid (GABA) receptors in the sleep process and evaluate their pharmacokinetics and toxicity. The outcomes indicated that FX extended the length of sleep and reduced the time it took to fall asleep. When the combined treatment of FX and DZP showed synergistic sedative action. Also, FX had a binding affinity of -7.2 kcal/mol, while DZP showed -8.4 kcal/mol. The pharmacokinetic investigation of FX demonstrated favorable drug-likeness and strong pharmacokinetic characteristics. Ultimately, FX demonstrated a strong sedative impact in the mouse model, likely via interacting with the GABAA receptor pathways.


Assuntos
Diazepam , Hipnóticos e Sedativos , Simulação de Acoplamento Molecular , Sono , Animais , Masculino , Camundongos , Hipnóticos e Sedativos/farmacologia , Diazepam/farmacologia , Sono/efeitos dos fármacos , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo
10.
Cell Signal ; 121: 111291, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986730

RESUMO

Metabolic diseases are abnormal conditions that impair the normal metabolic process, which involves converting food into energy at a cellular level, and cause difficulties like obesity and diabetes. The study aimed to investigate how ferulic acid (FA) and its derivatives could prevent different metabolic diseases and disorders and to understand the specific molecular mechanisms responsible for their therapeutic effects. Information regarding FA associations with metabolic diseases and disorders was compiled from different scientific search engines, including Science Direct, Wiley Online, PubMed, Scopus, Web of Science, Springer Link, and Google Scholar. This review revealed that FA exerts protective effects against metabolic diseases such as diabetes, diabetic retinopathy, neuropathy, nephropathy, cardiomyopathy, obesity, and diabetic hypertension, with beneficial effects on pancreatic cancer. Findings also indicated that FA improves insulin secretion by increasing Ca2+ influx through the L-type Ca2+ channel, thus aiding in diabetes management. Furthermore, FA regulates the activity of inflammatory cytokines (TNF-α, IL-18, and IL-1ß) and antioxidant enzymes (CAT, SOD, and GSH-Px) and reduces oxidative stress and inflammation, which are common features of metabolic diseases. FA also affects various signaling pathways, including the MAPK/NF-κB pathways, which play an important role in the progression of diabetic neuropathy and other metabolic disorders. Additionally, FA regulates apoptosis markers (Bcl-2, Bax, and caspase-3) and exerts its protective effects on cellular destruction. In conclusion, FA and its derivatives may act as potential medications for the management of metabolic diseases.


Assuntos
Ácidos Cumáricos , Doenças Metabólicas , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/uso terapêutico , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Animais , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/metabolismo
11.
Front Chem ; 12: 1376783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983677

RESUMO

Thymol (THY), as the natural monoterpene phenol, acts against oxidative stress and inflammatory processes. This study aimed to evaluate the anti-inflammatory effects and possible molecular mechanisms of THY via formalin-induced mouse and egg albumin-induced chick models alongside molecular docking and molecular dynamic (MD) simulations. THY (7.5, 15, and 30 mg/kg) was investigated, compared to celecoxib and ketoprofen (42 mg/kg), as anti-inflammatory standards. THY dose-dependently and significantly (p < 0.05) decreased paw-licking and edema diameter parameters in formalin (phases I and II) and egg albumin-induced models. Moreover, THY (15 mg/kg) exerted better anti-inflammatory effects in combination with the standard drug ketoprofen than alone and with celecoxib. In silico studies demonstrated elevated binding affinities of THY with cyclooxygenase-2 (COX-2) than the COX-1 enzyme, and the ligand binds at a similar location where ketoprofen and celecoxib interact. The results of MD simulations confirmed the stability of the test ligand. THY exerted anti-inflammatory effects on Swiss mice and young chicks, possibly by interacting with COX-2. As a conclusion, THY might be a hopeful drug candidate for the management of inflammatory disorders.

12.
Heliyon ; 10(12): e32899, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988539

RESUMO

Natural products are being developed as possible treatment options due to the rising prevalence of cancer and the harmful side effects of synthetic medications. Arctiin is a naturally occurring lignan found in numerous plants and exhibits different pharmacological activities, along with cancer. To elucidate the anticancer properties and underlying mechanisms of action, a comprehensive search of various electronic databases was conducted using appropriate keywords to identify relevant publications. The findings suggest that arctiin exhibits anticancer properties against tumor formation and various cancers such as cervical, myeloma, prostate, endothelial, gastric, and colon cancers in several preclinical pharmacological investigations. This naturally occurring compound exerts its anticancer effect through different cellular mechanisms, including mitochondrial dysfunction, cell cycle at different phases (G2/M), inhibition of cell proliferation, apoptotic cell death, and cytotoxic effects, as well as inhibition of migration and invasion of various malignant cells. Moreover, the study also revealed that, among the various cellular pathways, arctiin was shown to be more potent in terms of the PI3K/AKT and JAK/STAT signaling pathways. However, pharmacokinetic investigation indicated the compound's poor oral bioavailability. Because of these findings, arctiin might be considered a promising chemotherapeutic drug candidate.

13.
Biomed Pharmacother ; 176: 116939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870629

RESUMO

BACKGROUND: Sclareol (SCL), a labdane diterpene compound found in Salvia sclarea L., exhibited therapeutic effects. This study investigated the potential interaction between SCL and diazepam (DZP) in modulating sedation in the thiopental sodium-induced sleeping animal model, supported by in-silico molecular docking analysis. METHODS: The control, sclareol (5, 10 and 20 mg/kg), and the reference drugs [diazepam: 3 mg/kg and Caffeine (CAF): 10 mg/kg] were used in male albino mice. Then, sodium thiopental (40 mg/kg, i.p.) was administrated to induce sleep. The latent period, percentage of sleep incidence and modulation of latency were measured. Further, homology modeling of human γ-aminobutyric acid (GABA) was conducted examine the binding mode of GABA interaction with SCL, DZP, and CAF compounds RESULTS: SCL (low dose) slightly increased the sleep latency, while the higher dose significantly prolonged sleep latency. DZP, a GABAA receptor agonist, exhibited strong sleep-inducing properties, reducing sleep latency, and increasing sleeping time. Caffeine (CAF) administration prolonged sleep latency and reduced sleeping time, consistent with its stimulant effects. The combination treatments involving SCL, DZP, and CAF showed mixed effects on sleep parameters. The molecular docking revealed good binding affinities of SCL, DZP, and CAF for GABAA receptor subunits A2 and A5. CONCLUSIONS: Our findings highlighted the complex interplay between SCL, DZP, and CAF in regulating sleep behaviors and provided insights into potential combination therapies for sleep disorders.


Assuntos
Diazepam , Hipnóticos e Sedativos , Simulação de Acoplamento Molecular , Sono , Tiopental , Animais , Masculino , Hipnóticos e Sedativos/farmacologia , Camundongos , Diazepam/farmacologia , Sono/efeitos dos fármacos , Tiopental/farmacologia , Diterpenos/farmacologia , Cafeína/farmacologia , Simulação por Computador , Receptores de GABA-A/metabolismo , Humanos , Relação Dose-Resposta a Droga , Latência do Sono/efeitos dos fármacos
14.
Chem Biodivers ; 21(9): e202400747, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38808441

RESUMO

Phyllanthus emblica L., or Amla, is known for its therapeutic properties and has been used as a medicinal plant. It is rich in vitamin C and other bioactive phytochemicals like polyphenols, gallic acid, chebulagic acid, leutolin, quercetin, etc. Different parts of this plant are used to treat various viral, bacterial, and fungal diseases. This review article summarizes the recent literature relevant to the antiviral, antibacterial, and antifungal effects of P. emblica. A variety of bacteria (Staphylococcus aureus, Bacillus subtillus, Enterococcus faecalis, Salmonella typhi, and Escherichia, etc.), fungi (Alternaria alternate Botroyodiplodia theobromae, Colletotrichum corcori, Curvularia lunata, Fusarium exquisite, Fusarium solanii, Aspergillus niger, Candida albicans, Colletotrichum gleosparoitis, and Macrophomina phaseolina) and viruses, like Influenza A virus strain H3N2, hepatitis B, Human Immunodeficiency virus type-1 (HIV-1), Simplex virus type 1 (HSV-1) and type 2 (HSV-2) have experimented. Different techniques were used based on the way of identification. 'For example, disc diffusion, dilution methods, sound diffusion, Immuno-peroxidase monolayer assay, serum HBV and HBsAg assay, enzyme immunoassay, etc. The present review analyzed and summarized the antimicrobial activities of P. emblica and possible mechanisms of action to provide future directions in translating these findings clinically.


Assuntos
Phyllanthus emblica , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Bactérias/efeitos dos fármacos , Frutas/química , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Phyllanthus emblica/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Vírus/efeitos dos fármacos
15.
Phytother Res ; 38(8): 3877-3898, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768953

RESUMO

Resveratrol is a widely recognized polyphenolic phytochemical found in various plants and their fruits, such as peanuts, grapes, and berry fruits. It is renowned for its several health advantages. The phytochemical is well known for its anticancer properties, and a substantial amount of clinical evidence has also established its promise as a chemotherapeutic agent. This study focuses on assessing the anticancer properties of resveratrol and gaining insight into the underlying molecular mechanisms. It also evaluates the biopharmaceutical, toxicological characteristics, and clinical utilization of resveratrol to determine its suitability for further development as a reliable anticancer agent. Therefore, the information about preclinical and clinical studies was collected from different electronic databases up-to-date (2018-2023). Findings from this study revealed that resveratrol has potent therapeutic benefits against various cancers involving different molecular mechanisms, such as induction of oxidative stress, cytotoxicity, inhibition of cell migration and invasion, autophagy, arresting of the S phase of the cell cycle, apoptotic, anti-angiogenic, and antiproliferative effects by regulating different molecular pathways including PI3K/AKT, p38/MAPK/ERK, NGFR-AMPK-mTOR, and so on. However, the compound has poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of resveratrol). Clinical application also showed therapeutic benefits in several types of cancer with no serious adverse effects. We suggest additional extensive studies to further check the efficacy, safety, and long-term hazards. This could involve a larger number of clinical samples to establish the compound as a reliable drug in the treatment of cancer.


Assuntos
Antineoplásicos Fitogênicos , Resveratrol , Resveratrol/farmacologia , Humanos , Antineoplásicos Fitogênicos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos
16.
Front Chem ; 12: 1366844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690012

RESUMO

Introduction: D-pinitol, a naturally occurring inositol, has diverse biological activities like antioxidant, antimicrobial and anticancer activities. This study aimed to evaluate anti-inflammatory effect of d-pinitol in a chick model. Additionally, in silico studies were performed to evaluate the molecular interactions with cyclooxygenase-2 (COX-2). Methods: The tested groups received d-pinitol (12.5, 25, and 50 mg/kg) and the standard drugs celecoxib and ketoprofen (42 mg/kg) via oral gavage prior to formalin injection. Then, the number of licks was counted for the first 10 min, and the paw edema diameter was measured at 60, 90, and 120 min. Results and Discussion: The d-pinitol groups significantly (p < 0.05) reduced the number of paw licks and paw edema diameters, compared to negative control. When d-pinitol was combined with celecoxib, it reduced inflammatory parameters more effectively than the individual groups. The in silico study showed a promising binding capacity of d-pinitol with COX-2. Taken together, d-pinitol exerted anti-inflammatory effects in a dose-dependent manner, possibly through COX-2 interaction pathway.

17.
Chem Biodivers ; 21(7): e202400443, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757848

RESUMO

Ferulic acid (FA) is a naturally occurring phenolic compound commonly found in the plant Ferula communis. This study aims to investigate the hepatoprotective effect of FA and its derivatives (methyl ferulic acid and trans-ferulic acid) against oxidative stress and inflammation-related hepatotoxicity due to toxicants based on the results of different non-clinical and preclinical tests. For this, data was collected from different reliable electronic databases such as PubMed, Google Scholar, and ScienceDirect, etc. The results of this investigation demonstrated that FA and its derivatives have potent hepatoprotective effects against oxidative stress and inflammation-related damage. The findings also revealed that these protective effects are due to the antioxidant and anti-inflammatory effects of the chemical compound. FA and its analogues significantly inhibit free radical generation and hinder the effects of proinflammatory markers and inflammatory enzymes, resulting in diminished cytotoxic and apoptotic hepatocyte death. The compounds also prevent intracellular lipid accumulation and provide protective effects.


Assuntos
Ácidos Cumáricos , Inflamação , Estresse Oxidativo , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/química , Estresse Oxidativo/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia
18.
Nat Prod Res ; : 1-14, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676413

RESUMO

Inflammation is a complex and necessary mechanism of an organ's response to biological, chemical and/or physical stimuli. In recent years, investigations on natural compounds with therapeutic actions for the treatment of different diseases have increased. Among these compounds, bromelain is highlighted, as a cysteine protease isolated from the Ananas comosus (pineapple) stem. This review aimed to evaluate the anti-inflammatory activity of bromelain, as well as its pathways on inflammatory mediators, through a systematic review with in vitro studies on different cell lines. The search was performed in PubMed, Science Direct, Scopus, Cochrane Library and Web of Science databases. Bromelain reduced IL-1ß, IL-6 and TNF-α secretion when immune cells were already stimulated in an overproduction condition by proinflammatory cytokines, generating a modulation in the inflammatory response through prostaglandins reduction and activation of a cascade reactions that trigger neutrophils and macrophages, in addition to accelerating the healing process.

19.
Nat Prod Res ; : 1-17, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623737

RESUMO

Gigantol, a bibenzyl compound extracted from various medicinal plants, has shown a number of biological activities, making it an attractive candidate for potential medical applications. This systematic review aims to shed light on gigantol's promising role in inflammation treatment and its underlying mechanisms. Gigantol exhibits potential anti-inflammatory properties in pre-clinical pharmacological test systems. It effectively reduced the levels of pro-inflammatory markers and arachidonic acid metabolites through various pathways, such as NF-κB, AKT, PI3K, and JNK/cPLA2/12-LOX. The in-silico investigations demonstrated that the MMP-13 enzyme served as the most promising target for gigantol with highest binding affinity (docking score = -8.8 kcal/mol). Encouragingly, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of gigantol confirmed its compatibility with the necessary physiochemical, pharmacokinetic, and toxicity properties, bolstering its potential as a drug candidate. Gigantol, with its well-documented anti-inflammatory properties, could be a promising agent for treating inflammation in the near future.

20.
Front Pharmacol ; 15: 1366889, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638865

RESUMO

Introduction: Cheilanthes tenuifolia is an evergreen ornamental small fern, belonging to the family Pteridaceae, that grows in warm and rocky regions worldwide. Many species of Cheilanthes genus are evidently endowed with important phytochemicals and bioactivities. This study aimed to perform a preliminary phytochemical analysis of Cheilanthes tenuifolia leaves alongside an evaluation of free radical scavenging, anti-inflammatory, antimicrobial, and clot lysis activities of extract fractions. Materials and methods: A preliminary phytochemical analysis was done after fractionation of ethanolic extract (ECT) with n-hexane (HCT) and chloroform (CCT). Then, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, egg albumin and RBC membrane stabilization tests, disc diffusion, and human blood clot lysis assays were performed. Results: Phytochemical investigations suggested that the plant is rich in alkaloids, glycosides, tannins, and flavonoids. All obtained fractions exhibited concentration-dependent radical scavenging, inhibition of egg protein denaturation and RBC membrane lysis capacities. Except for antifungal tests, ECT exhibited better DPPH radical scavenging, anti-inflammatory, antibacterial, and clot lysis capacities than HCT and CCT fractions. However, all fractions exhibited a mild anti-inflammatory activity. Conclusion: C. tenuifolia might be a good source of antioxidant, anti-microbial, and anti-atherothrombotic agents. Further studies are required to isolate and characterize the active principles liable for each bioactivity, along with possible molecular interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA