Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(28): 40958-40975, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839739

RESUMO

Elevated metal(loid) concentrations in soil and foodstuffs is a significant global issue for many densely populated countries like Bangladesh, necessitating reliable estimation for sustainable management. Therefore, a comprehensive data synthesis from the published literature might help to provide a wholistic view of metal(loid) contamination in different areas in Bangladesh. This study provided a clearer view of metal(loid) contamination status and their associated ecological and health risks in different land use and ecosystems in Bangladesh. Comprehensive analyses were performed on data gathered from 143 published articles using multiple statistical techniques including meta-analysis. Considering the potential loading of metal(loid), the data were summarized under various groups, including coastal, rural, urban and industrial regions. Also, the concentrations of seven metal(loid)s, e.g., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), and arsenic (As) in soil, sediment, cereal, vegetable, fruit, surface water and groundwater were included. Results showed that the relative concentrations of metal(loid)s in comparison to the maximum permissible limit (MPL) were mostly less than one, although they varied significantly for locations and individual metal(loid). However, the normalized cumulative relative concentrations over the MPL for all seven metal(loid)s across different environmental samples were 4.75, 2.97, 1.51 and 2.79 for coastal, industrial, rural and urban areas, respectively, which was due to the higher concentration of Cd, Cr and Cu. Similar to the metal(loid) concentrations, the average of cumulative median non-cancer risks for all metal(loid)s was in the order of industrial (6.46) > urban (4.05) > rural (3.83) > coastal (2.41). This research outcome will provide a foundation for future research on metal(loid)s and will help in pertinent policy-making by the relevant authorities in Bangladesh.


Assuntos
Monitoramento Ambiental , Metais , Poluentes do Solo , Bangladesh , Poluentes do Solo/análise , Metais/análise , Solo/química , Metais Pesados/análise , Humanos
2.
J Hazard Mater ; 475: 134876, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870858

RESUMO

This study exposed adult Sydney rock oysters, of either sex or both, to the synthetic estrogen 17α-ethinylestradiol (EE2) at 50 ng/L for 21 days, followed by an examination of developmental endpoints and transcriptomic responses in unexposed larvae. Reduced survival was observed at 1 day post-fertilisation (dpf) in larvae from bi-parental exposure (FTMT). Motile larvae at 2 dpf were fewer from maternal (FTMC), paternal (FCMT), and FTMT exposures. Additionally, shell length at 7 dpf decreased in larvae from FTMC and FTMT parents. RNA sequencing (RNA-seq) revealed 1064 differentially expressed genes (DEGs) in 1-dpf larvae from FTMT parents, while fewer DEGs were detected in larvae from FTMC and FCMT parents, with 258 and 7, respectively. GO and KEGG analyses showed significant enrichment of DEGs in diverse terms and pathways, with limited overlap among treatment groups. IPA results indicated potential inhibition of pathways regulating energy production, larval development, transcription, and detoxification of reactive oxygen species in FTMT larvae. qRT-PCR validation confirmed significant downregulation of selected DEGs involved in these pathways and relevant biological processes, as identified in the RNA-seq dataset. Overall, our results suggest that the intergenerational toxicity of EE2 is primarily maternally transmitted, with bi-parental exposure amplifying these effects.


Assuntos
Etinilestradiol , Larva , Ostreidae , Transcriptoma , Poluentes Químicos da Água , Animais , Etinilestradiol/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Transcriptoma/efeitos dos fármacos , Ostreidae/efeitos dos fármacos , Ostreidae/crescimento & desenvolvimento , Ostreidae/genética , Feminino , Poluentes Químicos da Água/toxicidade , Masculino , Exposição Materna , Exposição Paterna/efeitos adversos
3.
Chemosphere ; 361: 142501, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825244

RESUMO

In aquatic environments the concurrent exposure of molluscs to microplastics (MPs) and estrogens is common, as these pollutants are frequently released by wastewater treatment plants into estuaries. Therefore, this study aimed to evaluate the independent and co-exposure impacts of polyethylene microplastics (PE-MPs) and estrogenic endocrine-disrupting chemicals (EEDCs) at environmentally relevant concentrations on polar metabolites and morphological parameters of the Sydney rock oyster. A seven-day acute exposure revealed no discernible differences in morphology; however, significant variations in polar metabolites were observed across oyster tissues. The altered metabolites were mostly amino acids, carbohydrates and intermediates of the Kreb's cycle. The perturbation of metabolites were tissue and sex-specific. All treatments generally showed an increase of metabolites relative to controls - a possible stimulatory and/or a potential hormetic response. The presence of MPs impeded the exposure of adsorbed and free EEDCs potentially due to the selective feeding behaviour of oysters to microplastics, favouring algae over similar-sized PE-MPs, and the formation of an eco/bio-corona involving faeces, pseudo-faeces, natural organic matter, and algae.


Assuntos
Disruptores Endócrinos , Estrogênios , Metaboloma , Microplásticos , Ostreidae , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Ostreidae/metabolismo , Ostreidae/efeitos dos fármacos , Estrogênios/toxicidade , Estrogênios/metabolismo , Disruptores Endócrinos/toxicidade , Metaboloma/efeitos dos fármacos , Polietileno/toxicidade , Feminino
4.
Int J Biol Macromol ; 257(Pt 1): 128357, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38035970

RESUMO

This study attempted to develop a low-cost and eco-friendly bio-based composite adsorbent that is highly efficient in capturing potential toxic metals. The bio-composite adsorbent was prepared using graphene oxide (GO), carboxymethyl cellulose (CMC) and chitosan (CS); and characterized using FTIR, SEM-EDX and WAXD techniques. Metal-ion concentration in an aqueous solution was measured by ICP-OES. This article reveals that the adsorption of heavy metal ions varied according to the adsorbent quantity, initial metal concentration, pH, and interaction time. The metal ions' adsorption capacity (mg/g) was observed to increase when the interaction time and metal concentration increased. Conversely, metal ions adsorption was decreased with an increase in adsorbent dosages. The effect of pH on metal ions' adsorption was ion-specific. The substantial adsorption by GO/CMC/CS composite for Co2+, CrO42-, Mn2+ and Cd2+, had the respective values of 43.55, 77.70, 57.78, and 91.38 mg/g under acidic conditions. The metal ions experimental data were best fitted with pseudo-second-order (PSO) kinetics, and Freundlich isotherm model (except Co2+). The separation factors (RL) value in the present investigation were found between 0 and 1, meaning that the metal ions adsorption onto GO/CS/CMC composite is favorable. The RL and sorption intensity (1/n) values fitted well to the adsorption isotherm.


Assuntos
Quitosana , Grafite , Poluentes Químicos da Água , Carboximetilcelulose Sódica/química , Adsorção , Quitosana/química , Água/química , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Íons
5.
Mar Pollut Bull ; 187: 114514, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580841

RESUMO

The Sundarbans is the largest single-mass mangrove forest in the world, experiencing environmental and anthropogenic stress from metal(loid) inputs. We undertook a comprehensive assessment of sediment contamination and ecological risks posed by metal(loid)s in the Sundarbans using previously published data. There was a distinct difference in metal(loid) content, pollution level and ecological risk in Bangladeshi and Indian parts of the Sundarbans, with the Indian counterpart experiencing relatively higher metal(loid) pollution. The higher pollution level in India might be attributed to its vicinity to municipal and industrial areas that act the primary source of metal(loid)s in the Sundarbans. The cumulative ecological risks of metal(loid)s pointed out that the south-eastern part of Bangladeshi Sundarbans and north-eastern Indian part are at moderate ecological risk. This research will provide valuable data to inform the responsible authorities and will underpin future policies and management to reduce future metal(loid) inputs in the Sundarbans.


Assuntos
Metais Pesados , Áreas Alagadas , Monitoramento Ambiental , Metais/análise , Poluição Ambiental/análise , Medição de Risco , Metais Pesados/análise , China
6.
Chemosphere ; 291(Pt 2): 132997, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34822861

RESUMO

This study aimed to reveal possible alterations to lipidomic profiles in Sydney rock oysters, Saccostrea glomerata, exposed to estrogenic mixtures (i.e., estrone, E1; 17ß-estradiol, E2; estriol, E3; 17α-ethinylestradiol, EE2; bisphenol A, BPA; 4-t-octylphenol, 4-t-OP; and 4-nonylphenol, 4-NP) at "low" and "high" concentrations, typical of those detected in Australian and global receiving waters. A seven-day acute exposure window exhibited significantly lower abundances of many non-polar metabolites in digestive gland, gills, and gonads. Overall, there was a strong effect of the carrier solvent ethanol (despite a low exposure of 0.0002%), with all solvent containing treatments exhibiting lower abundances of lipidic metabolites, especially in the gill and digestive gland. No significant changes of the lipidome were exhibited in the male gonad by estrogenic exposure. However, in the female gonad, significant reductions of phospholipids and phosphatidylcholine were associated with exposure to high estrogenic mixtures. We hypothesise that the decreases in these phospholipids in the female gonad may be attributable to 1) lower algal consumption and thus lower uptake of lipidic building blocks; 2) a reduction of available substrates for phospholipid and phosphatidylcholine synthesis; and/or 3) induction of reactive oxygen species via estrogen metabolism, which may cause lipid peroxidation and lower abundance of phospholipids.


Assuntos
Ostreidae , Poluentes Químicos da Água , Animais , Austrália , Estrogênios , Estrona/análise , Feminino , Gônadas , Lipidômica , Masculino , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Water Res ; 200: 117257, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077838

RESUMO

Estrogenic compounds enter waterways via effluents from wastewater treatment works (WWTW), thereby indicating a potential risk to organisms inhabiting adjacent receiving waters. However, little is known about the loads or concentrations of estrogenic compounds that enter Australian WWTWs, the efficiency of removing estrogenic compounds throughout the various stages of tertiary WWTW processes (which are common in Australia), nor the concentrations released into estuarine or marine receiving waters, and the associated risk for aquatic taxa residing in these environments. Therefore, seven estrogenic compounds, comprising the natural estrogens estrone (E1), 17ß-estradiol (E2) and estriol (E3), the synthetic estrogen (EE2), and the industrial chemicals bisphenol A (BPA), 4-t-octyl phenol (4-t-OP) and 4-nonyl phenol (4-NP), in wastewater samples were quantified via liquid chromatographic-mass spectrometry (LC-MS) after solid-phase extraction at different stages of wastewater treatment and associated receiving waters. The concentrations of the target compounds in wastewater ranged from < LOQ (limit of quantification) to 158 ng/L for Tanilba Bay WWTW and < LOQ to 162 ng/L for Belmont WWTW. Most target compounds significantly declined after the secondary treatment phase. Appreciable removal efficiency throughout the treatment process was observed with removal from 39.21 to 99.98% of influent values at both WWTWs. The reduction of the natural estrogens (E1, E2 and E3) and 4-t-OP were significantly greater than EE2, BPA, and 4-NP in both WWTWs. Risk quotients (RQs) were calculated to assess potential ecological risks from individual estrogenic compounds. In predicted diluted effluents, no targeted compounds showed any ecological risk (RQ ≤1.65 × 10-2) at both WWTWs. Similarly, all RQs for shore samples at both WWTWs were below 1. Finally, the hazard index (HI), which represents combined estrogenic contaminants' ecological risk, indicated no mentionable risk for predicted diluted effluents (HI = 0.0097 to 0.0218) as well as shoreline samples (HI = 0.393 to 0.522) in the receiving estuarine or marine waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Austrália , Monitoramento Ambiental , Estrogênios/análise , Estrona/análise , Poluentes Químicos da Água/análise
8.
J Hazard Mater ; 414: 125515, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662792

RESUMO

The current study represents the first attempt to analyse quantitatively, within a phylogenetic framework, uptake and partitioning patterns of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in extant saltmarsh taxa globally, and to assess associations of these patterns with various plant traits indicative of their halophytic adaptations. Despite saltmarsh being diverse taxonomically, most saltmarsh taxa accumulate metals to roots at, or above, unity (> 1). Further, there is significant translocation from roots to shoot for Cu, Zn and Cd (≤ 1), however, Pb is less mobile (TF = 0.65). Patterns of accumulation were similar among families, except greater Cd accumulation to roots in members of Juncaceae. Patterns of uptake to roots and translocation to leaves were broadly similar among plant type, plant form, habitat and photosynthetic mode. Zinc is lower in the leaves of salt-secreting species for some closely related taxa, suggesting some species co-excrete sodium (Na+) and Zn2+ through glands in leaf tissue. Salinity tolerance has no relationship to metal uptake and translocation. Translocation of Zn is greater at lower Zn sediment exposures, reflecting its active uptake and essentiality, but such bias does not affect outcomes of analyses when included as a covariate.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio , Cobre , Humanos , Filogenia , Raízes de Plantas , Plantas Tolerantes a Sal/genética , Zinco
9.
Aquat Toxicol ; 231: 105722, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360311

RESUMO

The current study investigated the effect of environmentally relevant mixtures of estrogens at levels representative of receiving waters on the metabolome of the Sydney rock oyster, Saccostrea glomerata. Oysters were exposed to a "low" and a "high" mixture of (xeno) estrogens (representative of Australian and global receiving waters respectively) for 7 days and digestive gland, gill, and gonad tissue were sampled for quantification of polar metabolites by 1H NMR spectroscopy. Exposure to both mixtures lowered body mass and altered the metabolite profile in the digestive glands. Comparatively, gills, and ovaries demonstrated lesser sensitivity to the mixtures, with significant metabolomic alterations observed only for the high mixture. The male gonad did not respond to either estrogenic exposure. In the responsive tissues, major metabolites including amino acids, carbohydrates, intermediates of the tricarboxylic acid cycle and ATP were all down-regulated and exhibited tissue-specific patterns of down-regulation with the greatest proportion of metabolites down-regulated due to estrogenic exposure in the digestive gland. Exposure to (xeno) estrogen mixtures representative of concentrations reported in receiving waters in Australia and globally can impact the metabolome and associated energy metabolism, especially in the digestive gland, translating to lower pools of available ATP energy for potential cellular homeostasis, somatic maintenance and growth, reproduction and fitness.


Assuntos
Exposição Ambiental , Estrogênios/toxicidade , Metaboloma/efeitos dos fármacos , Especificidade de Órgãos , Ostreidae/metabolismo , Animais , Austrália , Peso Corporal/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Masculino , Metabolômica , Ostreidae/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Razão de Masculinidade , Testículo/efeitos dos fármacos , Testículo/metabolismo , Poluentes Químicos da Água/toxicidade
10.
Environ Pollut ; 266(Pt 1): 114994, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32653741

RESUMO

Very little is currently known regarding the effects of estrogenic endocrine disrupting chemicals on embryonic and larval development in molluscs, nor the potential effects of parental (F0) exposure on resultant F1 offspring. In this study, we assessed the embryotoxic impacts of exposure to environmentally relevant concentrations of the synthetic estrogen, 17α-ethinylestradiol (EE2), to male and female parents (50 ng/L) and their offspring (5 and 50 ng/L) in the native Australian Sydney rock oyster, Saccostrea glomerata. There were no detectable effects of parental exposure on fertilisation success, proportions of early larval (F1) morphs and unfertilised eggs. Offspring impacts were evidenced in terms of developmental delays, with decreased percentages of D-veligers retained by 45 µm mesh, along with a reduction of swimming capabilities of larvae at 2 days post-fertilisation (dpf) when both parents had been exposed to 50 ng/L EE2. Although no significant parental effects were found on the survival of F1 larvae at 9 dpf, retardation of shell growth was observed on F1 larvae in treatments where both parents had been exposed to 50 ng/L EE2. Subsequent larval exposure from 2 to 9 dpf caused declines in survival and reduction of shell length in F1 larvae at both 5 and 50 ng/L EE2 across all parental exposure treatments. Collectively, parental EE2 imparts effects on offspring in terms of retardation of larval development, and subsequent offspring exposure to EE2 further exacerbates impacts to development. Future research should aim to understand the potential mechanisms of EE2 induced toxicity and its transmission resulting in altered phenotypes of the F1 generation.


Assuntos
Disruptores Endócrinos , Congêneres do Estradiol , Ostreidae , Poluentes Químicos da Água , Animais , Austrália , Etinilestradiol , Feminino , Masculino
11.
Sci Total Environ ; 713: 136576, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954255

RESUMO

Remnant endangered saltmarsh communities in Australia often occur in urbanised estuaries where industrial processes have contaminated sediments with metal(loid)s. Despite this issue, virtually nothing is known on local plant species exposure to metal contaminants, nor their ability to uptake and translocate metal(loid)s from contaminated estuarine sediment. In the current study, we assessed the accumulation and partitioning of the metal(loid)s Zn, Cu, Pb, Cd and Se in the dominant saltmarsh primary producer, Sporobolus virginicus, across three urbanised estuaries in NSW Australia. Lake Macquarie was the most contaminated estuary, while Sydney Olympic Park, Port Jackson exhibited intermediate metal(loid) loadings and Hunter Wetlands exhibited the lowest loadings among estuaries. Essential metals (Zn and Cu) were more mobile, with sediment:root bioconcentration factors (BCFs) greater than unity and translocation among plant organs greater than, or equal to, unity. Other metal(loid)s were less mobile, with BCFs equal to unity and translocation factors among organs much reduced. Despite these barriers to translocation, all metal(loid)s were accumulated to roots with dose, and further accumulative relationships between metal(loid)s in roots and culms, and culms and leaves, were evidenced (with the exception of Cu). Along with sediment metal(loid)s, increases in sediment pH predicted Cu uptake in roots and increases in soil organic matter predicted Se uptake in roots. Although significant positive linear relationships were observed between sediment metal(loid)s and plant organ metal(loid)s(withholding Cu), the variance explained was low to intermediate for most metal(loid)s suggesting employing S. virginicus as an accumulative bioindicator would be impractical.


Assuntos
Estuários , Austrália , Monitoramento Ambiental , Metaloides , Metais Pesados , Plantas Tolerantes a Sal
12.
Environ Pollut ; 248: 1067-1078, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31091639

RESUMO

Estrogenic endocrine disrupting chemicals (EDCs) are natural hormones, synthetic compounds or industrial chemicals that mimic estrogens due to their structural similarity with estrogen's functional moieties. They typically enter aquatic environments through wastewater treatment plant effluents or runoff from intensive livestock operations. Globally, most natural and synthetic estrogens in receiving aquatic environments are in the low ng/L range, while industrial chemicals (such as bisphenol A, nonylphenol and octylphenol) are present in the µg to low mg/L range. These environmental concentrations often exceed laboratory-based predicted no effect concentrations (PNECs) and have been evidenced to cause negative reproductive impacts on resident aquatic biota. In vertebrates, such as fish, a well-established indicator of estrogen-mediated endocrine disruption is overexpression of the egg yolk protein precursor vitellogenin (Vtg) in males. Although the vertebrate Vtg has high sensitivity and specificity to estrogens, and the molecular basis of its estrogen inducibility has been well studied, there is growing ethical concern over the use of vertebrate animals for contaminant monitoring. The potential utility of the invertebrate Vtg as a biomonitor for environmental estrogens has therefore gained increasing attention. Here we review evidence providing support that the molluscan Vtg holds promise as an invertebrate biomarker for exposure to estrogens. Unlike vertebrates, estrogen signalling in invertebrates remains largely unclarified and the classical genomic pathway only partially explains estrogen-mediated activation of Vtg. In light of this, in the latter part of this review, we summarise recent progress towards understanding the molecular mechanisms underlying the activation of the molluscan Vtg gene by estrogens and present a hypothetical model of the interplay between genomic and non-genomic pathways in the transcriptional regulation of the gene.


Assuntos
Disruptores Endócrinos/análise , Moluscos/metabolismo , Vitelogeninas/análise , Poluentes Químicos da Água/análise , Poluição da Água/análise , Animais , Compostos Benzidrílicos/análise , Biomarcadores/análise , Disruptores Endócrinos/toxicidade , Estrogênios/análise , Estrona/análise , Feminino , Peixes/metabolismo , Masculino , Fenóis/análise , Receptores de Estrogênio/metabolismo , Reprodução , Poluentes Químicos da Água/toxicidade
13.
EXCLI J ; 13: 1104-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26417325

RESUMO

The secondary metabolites such as essential oil and pure compounds (limonin and imperatorin) from Poncirus trifoliata Rafin were tested for in vitro control of phytopathogenic bacteria of Xanthomonas spp. In vitro studies showed that the oil had inhibitory effect on Xanthomonas campestris pv. compestris KC94-17-XCC, Xanthomonas campestris pv. vesicatoria YK93-4-XCV, Xanthomonas oryzae pv. oryzae KX019-XCO and Xanthomonas sp. SK12 with their inhibition zones and minimum inhibitory concentration (MIC) values ranging from 13.1~22.1 mm and 62.5~125 µg/ml, respectively. Limonin and imperatorin also had in vitro antibacterial potential (MIC: 15.62~62.5 µg/ml) against all the tested Xanthomonas spp. Furthermore, the SEM studies demonstrated that limonin and imperatorin caused morphological changes of Xanthomonas sp. SK12 at the minimum inhibitory concentration (15.62 µg/ml). These results of this study support the possible use of essential oil and natural compounds from P. Trifoliata in agriculture and agro-industries to control plant pathogenic microorganisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA