Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932170

RESUMO

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global COVID-19 pandemic, challenging healthcare systems worldwide. Effective therapeutic strategies against this novel coronavirus remain limited, underscoring the urgent need for innovative approaches. The present research investigates the potential of cannabis compounds as therapeutic agents against SARS-CoV-2 through their interaction with the virus's papain-like protease (PLpro) protein, a crucial element in viral replication and immune evasion. Computational methods, including molecular docking and molecular dynamics (MD) simulations, were employed to screen cannabis compounds against PLpro and analyze their binding mechanisms and interaction patterns. The results showed cannabinoids with binding affinities ranging from -6.1 kcal/mol to -4.6 kcal/mol, forming interactions with PLpro. Notably, Cannabigerolic and Cannabidiolic acids exhibited strong binding contacts with critical residues in PLpro's active region, indicating their potential as viral replication inhibitors. MD simulations revealed the dynamic behavior of cannabinoid-PLpro complexes, highlighting stable binding conformations and conformational changes over time. These findings shed light on the mechanisms underlying cannabis interaction with SARS-CoV-2 PLpro, aiding in the rational design of antiviral therapies. Future research will focus on experimental validation, optimizing binding affinity and selectivity, and preclinical assessments to develop effective treatments against COVID-19.


Assuntos
Antivirais , Canabinoides , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Canabinoides/farmacologia , Canabinoides/química , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Replicação Viral/efeitos dos fármacos
2.
J Chem Inf Model ; 63(22): 7180-7188, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37947496

RESUMO

The COVID-19 pandemic has emphasized the urgency for effective antiviral therapies against SARS-CoV-2. Targeting the main protease (3CLpro) of the virus has emerged as a promising approach, and nirmatrelvir (PF-07321332), the active component of Pfizer's oral drug Paxlovid, has demonstrated remarkable clinical efficacy. However, the emergence of resistance mutations poses a challenge to its continued success. In this study, we employed alchemical free energy perturbation (FEP) alanine scanning to identify nirmatrelvir-resistance mutations within SARS-CoV-2 3CLpro. FEP identified several mutations, which were validated through in vitro IC50 experiments and found to result in 8- and 72-fold increases in nirmatrelvir IC50 values. Additionally, we constructed SARS-CoV-2 omicron replicons containing these mutations, and one of the mutants (S144A/E166A) displayed a 20-fold increase in EC50, confirming the role of FEP in identifying drug-resistance mutations. Our findings suggest that FEP can be a valuable tool in proactively monitoring the emergence of resistant strains and guiding the design of future inhibitors with reduced susceptibility to drug resistance. As nirmatrelvir is currently widely used for treating COVID-19, this research has important implications for surveillance efforts and antiviral development.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Mutação , Antivirais/farmacologia
3.
Polymers (Basel) ; 15(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299228

RESUMO

Here, we synthesized and characterized a novel two-dimensional (2D) conjugated electron donor-acceptor (D-A) copolymer (PBDB-T-Ge), wherein the substituent of triethyl germanium was added to the electron donor unit of the polymer. The Turbo-Grignard reaction was used to implement the group IV element into the polymer, resulting in a yield of 86%. This corresponding polymer, PBDB-T-Ge, exhibited a down-shift in the highest occupied molecular orbital (HOMO) level to -5.45 eV while the lowest unoccupied molecular orbital (LUMO) level was -3.64 eV. The peaks in UV-Vis absorption and the PL emission of PBDB-T-Ge were observed at 484 nm and 615 nm, respectively.

4.
Commun Biol ; 6(1): 513, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173421

RESUMO

SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a 'decoy' to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against FLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like FLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/uso terapêutico , Anticorpos Monoclonais , SARS-CoV-2/genética , Engenharia de Proteínas
5.
Photochem Photobiol ; 99(2): 761-768, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36479699

RESUMO

We report the synthesis and photophysical characterization of novel halogenated dipyrrolonaphthyridine-diones (X2 -DPNDs, X = Cl, Br, and I), as candidates for photodynamic therapy (PDT) application. Apart from the heavy atom-induced spin-orbit coupling (SOC) dynamics in the investigated X2 -DPNDs, it was found that the position of the halogen atom (relative to the nitrogen of the pyrrole ring) also influenced the triplet excited state behavior. Interestingly, the faster/efficiency sensitization of 3 O2 to 1 O2 using X2 -DPND correlates with the rate of triplet population, kISC >1.6 × 108 s-1 for I2 -DPND vs kISC >2.9 × 109 s-1 for Cl2 -DPND and Br2 -DPND (where τISC  = 343 ± 3 ps for I2 -DPND and τISC  = 5-6 ns for Cl2 -DPND and Br2 -DPND are the lowest time constants/values for ISC). Furthermore, the heavy atom-induced SOC in Cl2 -DPND and Br2 -DPND did not lead to a reduction of the corresponding fluorescence (ca 75% vs 67% for the parent DPND). The attractive photophysical characteristics of Cl2 /Br2 -DPND put them on the landscape as not only promising PDT agents but also as fluorescence probes. The present study is a stepping stone in the development of novel organic photosystems for synergistic photomedicinal applications.


Assuntos
Corantes Fluorescentes , Fotoquimioterapia , Pirróis
6.
J Chem Inf Model ; 61(9): 4656-4669, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34427448

RESUMO

Even with the availability of vaccines, therapeutic options for COVID-19 still remain highly desirable, especially in hospitalized patients with moderate or severe disease. Soluble ACE2 (sACE2) is a promising therapeutic candidate that neutralizes SARS CoV-2 infection by acting as a decoy. Using computational mutagenesis, we designed a number of sACE2 derivatives carrying three to four mutations. The top-predicted sACE2 decoy based on the in silico mutagenesis scan was subjected to molecular dynamics and free-energy calculations for further validation. After illuminating the mechanism of increased binding for our designed sACE2 derivative, the design was verified experimentally by flow cytometry and BLI-binding experiments. The computationally designed sACE2 decoy (ACE2-FFWF) bound the receptor-binding domain of SARS-CoV-2 tightly with low nanomolar affinity and ninefold affinity enhancement over the wild type. Furthermore, cell surface expression was slightly greater than wild-type ACE2, suggesting that the design is well-folded and stable. Having an arsenal of high-affinity sACE2 derivatives will help to buffer against the emergence of SARS CoV-2 variants. Here, we show that computational methods have become sufficiently accurate for the design of therapeutics for current and future viral pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
Proteins ; 89(11): 1587-1601, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34288098

RESUMO

ß-hexosaminidase A (HexA) protein is responsible for the degradation of GM2 gangliosides in the central and peripheral nervous systems. Tay-Sachs disease occurs when HexA within Hexosaminidase does not properly function and harmful GM2 gangliosides begin to build up within the neurons. In this study, in silico methods such as SIFT, PolyPhen-2, PhD-SNP, and MutPred were utilized to analyze the effects of nonsynonymous single nucleotide polymorphisms (nsSNPs) on HexA in order to identify possible pathogenetic and deleterious variants. Molecular dynamics (MD) simulations showed that two mutants, P25S and W485R, experienced an increase in structural flexibility compared to the native protein. Particularly, there was a decrease in the overall number and frequencies of hydrogen bonds for the mutants compared to the wildtype. MM/GBSA calculations were performed to help assess the change in binding affinity between the wildtype and mutant structures and a mechanism-based inhibitor, NGT, which is known to help increase the residual activity of HexA. Both of the mutants experienced a decrease in the binding affinity from -23.8 kcal/mol in wildtype to -20.9 and -18.7 kcal/mol for the P25S and W485R variants of HexA, respectively.


Assuntos
Gangliosídeo G(M2)/química , Simulação de Dinâmica Molecular , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Doença de Tay-Sachs/genética , Cadeia alfa da beta-Hexosaminidase/química , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Acetilglucosamina/farmacologia , Sítios de Ligação , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/patologia , Gangliosídeo G(M2)/metabolismo , Expressão Gênica , Humanos , Ligação de Hidrogênio , Neurônios/enzimologia , Neurônios/patologia , Sistema Nervoso Periférico/enzimologia , Sistema Nervoso Periférico/patologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Doença de Tay-Sachs/enzimologia , Doença de Tay-Sachs/patologia , Termodinâmica , Tiazóis/química , Tiazóis/farmacologia , Cadeia alfa da beta-Hexosaminidase/genética , Cadeia alfa da beta-Hexosaminidase/metabolismo
8.
Angew Chem Int Ed Engl ; 60(23): 13089-13097, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33763941

RESUMO

The synthesis of 1-pyrrolines from N-alkenylnitrones and alkynes has been explored as a retrosynthetic alternative to traditional approaches. These cascade reactions are formal [4+1] cycloadditions that proceed through a proposed dipolar cycloaddition and N-alkenylisoxazoline [3,3']-sigmatropic rearrangement. A variety of cyclic alkynes and terminal alkynes have been shown to undergo the transformation with N-alkenylnitrones under mild conditions to provide the corresponding spirocyclic and densely substituted 1-pyrrolines with high regio- and diastereoselectivity. Mechanistic studies provide insight into the balance of steric and electronic effects that promote the cascade process and control the diastereo- and regioisomeric preferences of the 1-pyrroline products. Diastereoselective derivatization of the 1-pyrrolines prepared by the cascade reaction demonstrate the divergent synthetic utility of the new method.

9.
Proteins ; 89(6): 683-696, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33491267

RESUMO

Phenylketonuria (PKU) is a genetic disorder that if left untreated can lead to behavioral problems, epilepsy, and even mental retardation. PKU results from mutations within the phenylalanine-4-hydroxylase (PAH) gene that encodes for the PAH protein. The study of all PAH causing mutations is improbable using experimental techniques. In this study, a collection of in silico resources, sorting intolerant from tolerant, Polyphen-2, PhD-SNP, and MutPred were used to identify possible pathogenetic and deleterious PAH non-synonymous single nucleotide polymorphisms (nsSNPs). We identified two variants of PAH, I65N and L311P, to be the most deleterious and disease causing nsSNPs. Molecular dynamics (MD) simulations were carried out to characterize these point mutations on the atomic level. MD simulations revealed increased flexibility and a decrease in the hydrogen bond network for both mutants compared to the native protein. Free energy calculations using the MM/GBSA approach found that BH4 , a drug-based therapy for PKU patients, had a higher binding affinity for I65N and L311P mutants compared to the wildtype protein. We also identify important residues in the BH4 binding pocket that may be of interest for the rational drug design of other PAH drug-based therapies. Lastly, free energy calculations also determined that the I65N mutation may impair the dimerization of the N-terminal regulatory domain of PAH.


Assuntos
Coenzimas/química , Fenilalanina Hidroxilase/química , Fenilcetonúrias/genética , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Sítios de Ligação , Biopterinas/análogos & derivados , Coenzimas/metabolismo , Desenho de Fármacos , Expressão Gênica , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Especificidade por Substrato , Termodinâmica
10.
RSC Adv ; 11(37): 22937-22950, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35480423

RESUMO

In this study, gel polymer electrolytes (GPEs) were prepared using polyacrylonitrile (PAN) polymer, ethylene carbonate (EC), propylene carbonate (PC) plasticizers and different compositions of tetrapropylammonium iodide (TPAI) salt. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) measurements were done using non-blocking Pt-electrode symmetric cells. The limiting current (J lim), apparent diffusion coefficient of triiodide ions and exchange current were found to be 12.76 mA cm-2, 23.41 × 10-7 cm2 s-1 and 11.22-14.24 mA cm-2, respectively, for the GPE containing 30% TPAI. These values are the highest among the GPEs with different TPAI contents. To determine the ionic conductivity, the EIS technique was employed with blocking electrodes. The GPE containing 30% TPAI exhibited the lowest bulk impedance, R b (22 Ω), highest ionic conductivity (3.62 × 10-3 S cm-1) and lowest activation energy. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques were utilized for structural characterization. Functional group interactions among PAN, EC, PC and TPAI were studied in the FTIR spectra of the GPEs. An up-shift of the XRD peak indicates the polymer-salt interaction and possible complexation of the cation (TPA+ ion) with the lone pair of electrons containing site -C[triple bond, length as m-dash]N at the N atom in the host polymer matrix. On the other hand, computational study shows that TPAI-PAN based GPE possesses the lowest frontier orbital bandgap, which coincided with the enhanced electrochemical and electrocatalytic performance of GPE. The dye-sensitized solar cell (DSSC) fabricated with these GPEs showed that the J SC (19.75 mA cm-2) and V OC (553.8 mV) were the highest among the GPEs and hence the highest efficiency, η (4.76%), was obtained for the same electrolytes.

11.
J Biomol Struct Dyn ; 39(18): 7044-7055, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32787631

RESUMO

The majority of genetic variations in the human genome that lead to variety of different diseases are caused by non-synonymous single nucleotide polymorphisms (nsSNPs). Neurofibromatosis type 2 (NF2) is a deadly disease caused by nsSNPs in the NF2 gene that encodes for a protein called merlin. This study used various in silico methods, SIFT, Polyphen-2, PhD-SNP and MutPred, to investigate the pathogenic effect of 14 nsSNPs in the merlin FERM domain. The G197C and L234R mutations were found to be two deleterious and disease mutations associated with the mild and severe forms of NF2, respectively. Molecular dynamics (MD) simulations were conducted to understand the stability, structure and dynamics of these mutations. Both mutant structures experienced larger flexibility compared to the wildtype. The L234R mutant suffered from more prominent structural instability, which may help to explain why it is associated with the more severe form of NF2. The intramolecular hydrogen bonding in L234R mutation decreased from the wildtype, while intermolecular hydrogen bonding of L234R mutation with solvent greatly increased. The native contacts were also found to be important. Protein-protein docking revealed that L234R mutation decreased the binding complementarity and binding affinity of LATS2 to merlin, which may have an impact on merlin's ability to regulate the Hippo signaling pathway. The calculated binding affinity of the LATS2 to L234R mutant and wildtype merlin protein is found to be 21.73 and -11 kcal/mol, respectively. The binding affinity of the wildtype merlin agreed very well with the experimental value, -8 kcal/mol.Communicated by Ramaswamy H. Sarma.


Assuntos
Neurofibromatose 2 , Neurofibromina 2 , Polimorfismo de Nucleotídeo Único , Genes da Neurofibromatose 2 , Humanos , Simulação de Dinâmica Molecular , Neurofibromatose 2/genética , Neurofibromina 2/genética , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor
12.
J Biomol Struct Dyn ; 39(12): 4304-4315, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32544024

RESUMO

Respiratory disease caused by a novel coronavirus, COVID-19, has been labeled a pandemic by the World Health Organization. Very little is known about the infection mechanism for this virus. More importantly, there are no drugs or vaccines that can cure or prevent a person from getting COVID-19. In this study, the binding affinity of 2692 protease inhibitor compounds that are known in the protein data bank, are calculated against the main protease of the novel coronavirus with docking and molecular dynamics (MD). Both the docking and MD methods predict the macrocyclic tissue factor-factor VIIa (PubChem ID: 118098670) inhibitor to bind strongly with the main protease with a binding affinity of -10.6 and -10.0 kcal/mol, respectively. The TF-FVIIa inhibitors are known to prevent the coagulation of blood and have antiviral activity as shown in the case of SARS coronavirus. Two more inhibitors, phenyltriazolinones (PubChem ID: 104161460) and allosteric HCV NS5B polymerase thumb pocket 2 (PubChem ID: 163632044) have shown antiviral activity and also have high affinity towards the main protease of COVID-19. Furthermore, these inhibitors interact with the catalytic dyad in the active site of the COVID-19 main protease that is especially important in viral replication. The calculated theoretical dissociation constants of the proposed COVID-19 inhibitors are found to be very similar to the experimental dissociation constant values of similar protease-inhibitor systems.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Humanos , Simulação de Acoplamento Molecular , Pandemias , Peptídeo Hidrolases , SARS-CoV-2
13.
ACS Omega ; 5(35): 22449-22458, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923803

RESUMO

Ab initio calculations were carried out to understand the reactivity and stability of some uracil derivatives, cytosine, 1-methyl cytosine, and cytidine in solvents, water, dimethyl sulfoxide (DMSO), n-octanol, and chloroform. Geometries were fully optimized at MP2 and B3LYP using the 6-31+G(d,p) basis set by applying the Solvation Model on Density (SMD) in solvent systems. The syn conformer of cytidine (cytidine II) is the most stable conformer in the gas phase, while the anticonformer (cytidine IV) is most stable in all of the solvents. Solvation free energy and polarizability values in different solvents decrease in the order water > DMSO > n-octanol > chloroform, while dipole moment, first-order hyperpolarizability, and HOMO-LUMO energy gap values follow the order of polar protic solvent (water and n-octanol) > polar aprotic solvent (DMSO) > nonpolar solvent (chloroform). The solvation free energy, dipole moment, polarizability, and first-order hyperpolarizability values also follow the order of cytosine > 1-methyl cytosine > cytidine. To illustrate that the molecular properties correlate well with the reactivity of the molecules, ab initio calculations were carried out for the reaction of uracil derivatives with Br2 in the gas phase, water, DMSO, n-octanol, and chloroform. All ground and transition state geometries were fully optimized at B3LYP/6-31+G(d,p), and energies were also calculated at G3MP2 for cytosine and 1-methyl cytosine. For cytosine and 1-methyl cytosine, Gibbs energies of activation decrease with the polarity of the solvent that is chloroform > n-octanol > DMSO > water, while the Gibbs energies of activation for the reaction with cytidine decrease in the order of water > DMSO > n-octanol > chloroform. These results suggest that solvent polarity is very important for the stability and reactivity of uracil derivatives. Hydrogen bonding may also play an important role mainly for cytidine. Free energies of activation decrease with the size of the molecule, i.e., cytosine > 1-methyl cytosine > cytidine.

14.
Angew Chem Int Ed Engl ; 59(35): 15244-15248, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32374468

RESUMO

A dearomative [3,3']-sigmatropic rearrangement that converts N-alkenylbenzisoxazolines into spirocyclic pyrroline cyclohexadienones has been developed by using the dipolar cycloaddition of an N-alkenylnitrone and an aryne to access these unusual transient rearrangement precursors. This cascade reaction affords spirocyclic pyrrolines that are inaccessible through dipolar cycloadditions of exocyclic cyclohexenones and provides a fundamentally new approach to novel spirocyclic pyrroline and pyrrolidine motifs that are common scaffolds in biologically-active molecules. Diastereoselective functionalization processes have also been explored to demonstrate the divergent synthetic utility of the unsaturated spirocyclic products.

15.
J Phys Chem B ; 124(10): 1919-1927, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32075374

RESUMO

Furanosides have been subjected to extensive studies owing to their inherent flexibility, which is believed to play an important role in the survival and pathogenicity of different disease-causing organisms in the human body. This study reports the binding free energy (ΔG) and specificity of arabinofuranose oligosaccharides to a protein, arabinanase (Arb43A), with the use of potential of mean force (PMF) calculations using the umbrella-sampling simulations. Long molecular dynamics simulations have been carried out to understand intermolecular interactions in the arabinofuranose-protein complex. The PMF for pulling the α-(1 → 5)-linked L-arabinohexaose (ligand) from the protein provides a large free energy of binding, -16.8 kcal/mol. The ΔG of the nonreducing arabinotriose end is found to be -12.6 kcal/mol, while the ΔG of the reducing end is calculated to be -7.7 kcal/mol. In the absence of nonreducing arabinotrioside, the ΔG of the reducing arabinotrioside is -8.5 kcal/mol. Similarly, in the absence of reducing arabinotrioside, the ΔG of the nonreducing arabinotrioside is calculated to be -9.4 kcal/mol. The main contributing factor in the protein-arabinofuranose binding is hydrogen bonding. Acidic amino acid residues, Glu and Asp, with furanosides produce the strongest hydrogen bonding. Araf-A, B, and C construct the reducing arabinotriose, while Araf-D, E, and F construct the nonreducing arabinotriose. Since most of the hydrogen-bonding occupancies belong to Araf-D and Araf-E, the nonreducing arabinotriose is bound to protein more strongly than the reducing arabinotriose. This explains why the reducing arabinotriose can detach from the protein in nature.


Assuntos
Simulação de Dinâmica Molecular , Humanos , Ligação de Hidrogênio , Ligação Proteica , Termodinâmica
16.
Chem Sci ; 11(13): 3441-3447, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-34745516

RESUMO

Nitrous oxide (N2O) contributes significantly to ozone layer depletion and is a potent greenhouse agent, motivating interest in the chemical details of biological N2O fixation by nitrous oxide reductase (N2OR) during bacterial denitrification. In this study, we report a combined experimental/computational study of a synthetic [4Cu:1S] cluster supported by N-donor ligands that can be considered the closest structural and functional mimic of the CuZ catalytic site in N2OR reported to date. Quantitative N2 measurements during synthetic N2O reduction were used to determine reaction stoichiometry, which in turn was used as the basis for density functional theory (DFT) modeling of hypothetical reaction intermediates. The mechanism for N2O reduction emerging from this computational modeling involves cooperative activation of N2O across a Cu/S cluster edge. Direct interaction of the µ4-S ligand with the N2O substrate during coordination and N-O bond cleavage represents an unconventional mechanistic paradigm to be considered for the chemistry of CuZ and related metal-sulfur clusters. Consistent with hypothetical participation of the µ4-S unit in two-electron reduction of N2O, Cu K-edge and S K-edge X-ray absorption spectroscopy (XAS) reveal a high degree of participation by the µ4-S in redox changes, with approximately 21% S 3p contribution to the redox-active molecular orbital in the highly covalent [4Cu:1S] core, compared to approximately 14% Cu 3d contribution per copper. The XAS data included in this study represent the first spectroscopic interrogation of multiple redox levels of a [4Cu:1S] cluster and show high fidelity to the biological CuZ site.

17.
J Comput Chem ; 41(5): 415-420, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31329318

RESUMO

The double electron-electron resonance (DEER) is a powerful structural biology technique to obtain distance information in the range of 18 to 80 å by measuring the dipolar coupling between two unpaired electron spins. The distance distributions obtained from the experiment provide valuable structural information about the protein in its native environment that can be exploited using restrained ensemble molecular dynamics (reMD) simulations. We present a new tool DEER Facilitator in CHARMM-GUI that consists of two modules Spin-Pair Distributor and reMD Prepper to setup simulations that utilize information from DEER experiments. Spin-Pair Distributor provides a web-based interface to calculate the spin-pair distance distribution of labeled sites in a protein using MD simulations. The calculated distribution can be used to guide the selection of the labeling sites in experiments as well as validate different protein structure models. reMD Prepper facilities the setup of reMD simulations using different types of spin labels in four different environments including vacuum, solution, micelle, and bilayer. The applications of these two modules are demonstrated with several test cases. Spin-Pair Distributor and reMD Prepper are available at http://www.charmm-gui.org/input/deer and http://www.charmm-gui.org/input/deerre. DEER Facilitator is expected to facilitate advanced biomolecular modeling and simulation, thereby leading to an improved understanding of the structure and dynamics of complex biomolecular systems based on experimental DEER data. © 2019 Wiley Periodicals, Inc.


Assuntos
Gráficos por Computador , Simulação de Dinâmica Molecular , Espectroscopia de Ressonância de Spin Eletrônica
18.
Angew Chem Int Ed Engl ; 59(2): 627-631, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31661177

RESUMO

The model complex [Cu4 (µ4 -S)(dppa)4 ]2+ (1, dppa=µ2 -(Ph2 P)2 NH) has N2 O reductase activity in methanol solvent, mediating 2 H+ /2 e- reduction of N2 O to N2 +H2 O in the presence of an exogenous electron donor (CoCp2 ). A stoichiometric product with two deprotonated dppa ligands was characterized, indicating a key role of second-sphere N-H residues as proton donors during N2 O reduction. The activity of 1 towards N2 O was suppressed in solvents that are unable to provide hydrogen bonding to the second-sphere N-H groups. Structural and computational data indicate that second-sphere hydrogen bonding induces structural distortion of the [Cu4 S] active site, accessing a strained geometry with enhanced reactivity due to localization of electron density along a dicopper edge site. The behavior of 1 mimics aspects of the CuZ catalytic site of nitrous oxide reductase: activity in the 4CuI :1S redox state, use of a second-sphere proton donor, and reactivity dependence on both primary and secondary sphere effects.


Assuntos
Cobre/química , Oxirredutases/química , Ligação de Hidrogênio , Modelos Moleculares , Oxirredução , Prótons
19.
Inorg Chem ; 57(19): 12113-12124, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222331

RESUMO

Heteroaryl incorporated acetylide-functionalized pyridinyl ligands (L1-L6) with the general formula Py-C≡C-Ar (Py = pyridine and Ar = thiophene-2-yl, 2,2' -bithiophene]-5-yl, 2,2' :5',2″ -terthiophene]-5-yl, thieno[2,3- b]thiophen-2-yl, quinoline-5-yl, benzo[c][1,2,5]thiadiazole-5-yl) have been synthesized by Pd(0)/Cu(I)-catalyzed cross-coupling reaction of 4-ethynylpyridine and the respective heteroaryl halide. Ligands L1-L6 were isolated in respectable yields and characterized by microanalysis, IR spectroscopy, 1H NMR spectroscopy, and ESI-MS mass spectrometry. A series of dinuclear Cu(I) complexes 1-10 have been synthesized by reacting L1-L6 with CuI and triphenylphosphine (PPh3) (R1) or with an anchored phosphine derivative, 4-(diphenylphosphino) benzoic acid (R2)/2-(diphenylphosphino)benzenesulfonic acid (R3), in a stoichiometric ratio. The complexes are soluble in common organic solvents and have been characterized by analytical, spectroscopic, and computational methods. Single-crystal X-ray structure analysis confirmed rhomboid dimeric structures for complexes 1, 2, 4, and 5, and a polymeric structure for 6. Complexes 1-6 showed oxidation potential responses close to 0.9 V vs Fc0/+, which were chemically irreversible and are likely to be associated with multiple steps and core oxidation. Preliminary photovoltaic (PV) results of these new materials indicated moderate power conversion efficiency (PCE) in the range of 0.15-1.56% in dye-sensitized solar cells (DSSCs). The highest PCE was achieved with complex 10 bearing the sulfonic acid anchoring functionality.

20.
J Am Chem Soc ; 140(3): 1159-1164, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29278494

RESUMO

We have developed a modular procedure to synthesize allylic alcohols from tertiary, secondary, and primary alkyl halides and alkynes via a Cu-catalyzed hydrocarbonylative coupling and 1,2-reduction tandem sequence. The use of tertiary alkyl halides as electrophiles was found to enable the synthesis of various allylic alcohols bearing α-quaternary carbon centers in good yield with high 1,2-reduction selectivity. Mechanistic studies that suggested a different pathway was operative with tertiary alkyl halides compared with primary and secondary alkyl halides for generating the key copper(III) oxidative adduct. For tertiary electrophiles, an acyl halide likely forms via radical atom transfer carbonylation. The preference for 1,2-reduction over 1,4-reduction of α,ß-unsaturated ketones bearing tertiary substituents was rationalized using density functional theory transition state analysis. On the basis of this computational model, the coupling method was extended to primary and secondary alkyl iodide electrophiles by using internal alkynes with aryl substituents, providing trisubstituted allylic alcohols in high yield with good regioselectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA