Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121697, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38976951

RESUMO

The Taklimakan Desert, known for extreme aridity and unique ecological challenges, maintains a delicate life balance beneath its harsh surface. This study investigates intricate dynamics of soil animal communities within this desert ecosystem, with a particular focus on vertical profile variations beneath four dominant shrub species (AS-Alhagi sparsifolia, KC-Karelinia caspia, TR- Tamarix ramosissima, CC- Calligonum caput-medusae). Utilizing comprehensive soil sampling and metagenomics techniques, we reveal the diversity and distribution patterns of soil animal communities from the soil surface down to deeper layers (0-100 cm). Our research outcomes have unveiled that Nematoda and Arthropoda emerge as the most predominant classes of soil animals across all studied shrubs. Specifically, Nematoda exhibited notably high abundance in the KC area, while Arthropoda thrived predominantly in the TR region. We also observed a linear decrease in Nematoda populations as soil depth increased, consistent among all shrub species. Moreover, the highest Shannon diversity within soil animal communities was recorded in the KC area, underscoring a trend of declining alpha diversity in the AS region and an increase in other shrub areas as soil depth increased. Notably, the zones dominated by CC and TR displayed the highest levels of beta diversity. Our correlation analysis of soil animals and environmental factors has pinpointed soil water content, available phosphorus, and available potassium as the most influential drivers of variations in the top-classified soil animal communities. This study provides insights into soil animals in deserts, supporting future research to preserve these fragile deserts and enhance our understanding of life below the surface in challenging ecosystems.


Assuntos
Clima Desértico , Ecossistema , Solo , Animais , Conservação dos Recursos Naturais , Biodiversidade
2.
Chemosphere ; 362: 142641, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906184

RESUMO

Increasing microplastic (MP) pollution, primarily from anthropogenic sources such as plastic film mulching, waste degradation, and agricultural practices, has emerged as a pressing global environmental concern. This review examines the direct and indirect effects of MPs on crops, both in isolation and in conjunction with other contaminants, to elucidate their combined toxicological impacts. Organic fertilizers predominantly contain 78.6% blue, 9.5% black, and 8.3% red MPs, while irrigation water in agroecosystems contains 66.2% white, 15.4% blue, and 8.1% black MPs, ranging from 0-1 mm to 4-5 mm in size. We elucidate five pivotal insights: Firstly, soil MPs exhibit affinity towards crop roots, seeds, and vascular systems, impeding water and nutrient uptake. Secondly, MPs induce oxidative stress in crops, disrupting vital metabolic processes. Thirdly, leachates from MPs elicit cytotoxic and genotoxic responses in crops. Fourthly, MPs disrupt soil biotic and abiotic dynamics, influencing water and nutrient availability for crops. Lastly, the cumulative effects of MPs and co-existing contaminants in agricultural soils detrimentally affect crop yield. Thus, we advocate agronomic interventions as practical remedies. These include biochar input, application of growth regulators, substitution of plastic mulch with crop residues, promotion of biological degradation, and encouragement of crop diversification. However, the efficacy of these measures varies based on MP type and dosage. As MP volumes increase, exploring alternative mitigation strategies such as bio-based plastics and environmentally friendly biotechnological solutions is imperative. Recognizing the persistence of plastics, policymakers should enact legislation favoring the mitigation and substitution of non-degradable materials with bio-derived or compostable alternatives. This review demonstrates the urgent need for collective efforts to alleviate MP pollution and emphasizes sustainable interventions for agricultural ecosystems.


Assuntos
Agricultura , Microplásticos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Solo/química , Agricultura/métodos , Recuperação e Remediação Ambiental/métodos , Produtos Agrícolas , Fertilizantes , Biodegradação Ambiental , Plásticos
3.
Front Plant Sci ; 15: 1296641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711612

RESUMO

Introduction: Plastic film mulching (PFM) and deficit irrigation (DI) are vital water-saving approaches in arid agriculture. Cyperus esculentus is a significant crop in dry zones. However, scant data exists on the impacts of these water-saving methods on C. esculentus yield and quality. Method: Using randomized block experiment design. Three irrigation strategies were tested: CK (standard irrigation), RW20 (20% water reduction), and RW40 (40% water reduction). Mulchin treatments included film mulching (FM) and no film mulching (NFM). Results: Results revealed substantial effects of film mulching and drip irrigation on soil nutrients and physical properties, with minor influence on grass, root, and tuber stoichiometry. PF treatment, DI treatments, and their interaction significantly affected C. esculentus forage and tuber yields. Initially, grass and tuber yields increased and then decreased with reduced irrigation. The highest yields were under RW20 (3716.31 and 4758.19 kg/ha). FM increased grass and tuber yield by 17.99% and 8.46%, respectively, over NFM. The water reduction augmented the biomass distribuiton of the leaf and root, while reducing the tuber biomass in NFM. FM significantely impacted grass ether extract content, while reduced water influenced grass and tuber crude protein and tuber ether extract content. Mild water stress increased ether extract, crude protein, and soluble matter in grass and tubers, while excessive RW decreased them. Conclusion: Integrating soil traits, nutrients, yield, and quality, findings indicate C. esculentus yield and quality primarily hinge on soil water content, pond hydrogenase, and electrical conductivity. Based on this results, the recommended strategy is to reduce irrigation by 20% for cultivating C. esculentus in this area.

4.
Front Microbiol ; 15: 1361756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591034

RESUMO

Phyllosphere microbes residing on plant leaf surfaces for maintaining plant health have gained increasing recognition. However, in desert ecosystems, knowledge about the variety, composition, and coexistence patterns of microbial communities in the phyllosphere remains limited. This study, conducted across three basins (Turpan-TLF, Tarim-CL, and Dzungaria-MSW) and three seasons (spring, summer, and autumn) in Xinjiang, China, aimed to explore the diversity and composition of microbial communities in the phyllosphere, encompassing both bacteria and fungi in Alhagi sparsifolia. We also investigated the co-occurrence patterns, influencing factors, and underlying mechanisms driving these dynamics. Results indicate that phyllosphere bacteria exhibited lower diversity indices (ACE, Shannon, Simpson, Fisher phylogenetic diversity, and Richness) in spring compared to summer and autumn, while the Goods Coverage Index (GCI) was higher in spring. Conversely, diversity indices and GCI of phyllosphere fungi showed an opposite trend. Interestingly, the lowest level of multi-functionality and niche width in phyllosphere bacteria occurred in spring, while the highest level was observed in phyllosphere fungi. Furthermore, the study revealed that no significant differences in multi-functionality were found among the regions (CL, MSW, and TLF). Network analysis highlighted that during spring, phyllosphere bacteria exhibited the lowest number of nodes, edges, and average degree, while phyllosphere fungi had the highest. Surprisingly, the multi-functionality of both phyllosphere bacteria and fungi showed no significant correlation with climatic and environmental factors but displayed a significant association with the morphological characteristics and physicochemical properties of leaves. Structural Equation Model indicated that the morphological characteristics of leaves significantly influenced the multi-functionality of phyllosphere bacteria and fungi. However, the indirect and total effects of climate on multi-functionality were greater than the effects of physicochemical properties and morphological characteristics of leaves. These findings offer new insights into leaf phyllosphere microbial community structure, laying a theoretical foundation for vegetation restoration and rational plant resource utilization in desert ecosystems.

5.
J Environ Manage ; 354: 120217, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340666

RESUMO

The underground community of soil organisms, known as soil biota, plays a critical role in terrestrial ecosystems. Different ecosystems exhibit varied responses of soil organisms to soil physical and chemical properties (SPCPs). However, our understanding of how soil biota react to different soil depths in naturally established population of salinity tolerant Tamarix ramosissima in desert ecosystems, remains limited. To address this, we employed High-Throughput Illumina HiSeq Sequencing to examine the population dynamics of soil bacteria, fungi, archaea, protists, and metazoa at six different soil depths (0-100 cm) in the naturally occurring T. ramosissima dominant zone within the Taklimakan desert of China. Our observations reveal that the alpha diversity of bacteria, fungi, metazoa, and protists displayed a linear decrease with the increase of soil depth, whereas archaea exhibited an inverse pattern. The beta diversity of soil biota, particularly metazoa, bacteria, and protists, demonstrated noteworthy associations with soil depths through Non-Metric Dimensional Scaling analysis. Among the most abundant classes of soil organisms, we observed Actinobacteria, Sordariomycetes, Halobacteria, Spirotrichea, and Nematoda for bacteria, fungi, archaea, protists, and metazoa, respectively. Additionally, we identified associations between the vertical distribution of dominant biotic communities and SPCPs. Bacterial changes were mainly influenced by total potassium, available phosphorus (AP), and soil water content (SWC), while fungi were impacted by nitrate (NO3-) and available potassium (AK). Archaea showed correlations with total carbon (TC) and AK thus suggesting their role in methanogenesis and methane oxidation, protists with AP and SWC, and metazoa with AP and pH. These correlations underscore potential connections to nutrient cycling and the production and consumption of greenhouse gases (GhGs). This insight establishes a solid foundation for devising strategies to mitigate nutrient cycling and GHG emissions in desert soils, thereby playing a pivotal role in the advancement of comprehensive approaches to sustainable desert ecosystem management.


Assuntos
Ecossistema , Tamaricaceae , Solo/química , Conservação dos Recursos Naturais , Archaea/genética , Bactérias , Biota , Nutrientes , Fungos , Potássio , Microbiologia do Solo
6.
Insects ; 14(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37999058

RESUMO

The red palm weevil (RPW) poses a significant threat to date palm ecosystems, highlighting the necessity of sustainable pest management strategies that carefully consider the delicate ecological balance within these environments. This comprehensive review delves into innovative approaches to sustainable pest management, specifically focusing on date palm, and seeks to unravel the intricate ecological dynamics underlying RPW infestations. We thoroughly analyze biocontrol methods, eco-friendly chemical interventions, and integrated pest management (IPM) strategies, aiming to minimize the ecological impact while effectively addressing RPW infestations. By emphasizing the interplay of both living organisms (biotic) and environmental factors (abiotic) in shaping RPW dynamics, we advocate for a holistic and sustainable management approach that ensures the long-term resilience of date palm ecosystems. This review aims to contribute to an ecologically sound framework for pest management, promoting the sustainability and vitality of date palm ecosystems amidst the challenges posed by the RPW.

7.
Plants (Basel) ; 12(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960034

RESUMO

The transmission of plant viruses from infected to healthy host plants is a process in which insects play a major role, using various transmission strategies. Environmental factors have an impact on the transmission of viruses and the subsequent development of infections or diseases. When viruses are successful, plant virus diseases can reach epidemic proportions. Many plants across different regions are vulnerable to viral infections transmitted by the whitefly vector. Begomoviruses, which are transmitted by whiteflies, represent a significant threat to agriculture worldwide. The review highlights the mechanisms of virus acquisition and transmission by whiteflies and explores the factors influencing these interactions. Understanding the impacts of these changes is crucial for managing the spread of pests and mitigating damage to crops. It underscores the need for continued research to elucidate the mechanisms driving plant-insect-virus interactions and to identify new approaches for sustainable pest management.

8.
Environ Res ; 238(Pt 2): 117282, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783329

RESUMO

Plant diseases pose a severe threat to modern agriculture, necessitating effective and lasting control solutions. Environmental factors significantly shape plant ecology. Human-induced greenhouse gas emissions have led to global temperature rise, impacting various aspects, including carbon dioxide (CO2) concentration, temperature, ozone (O3), and ultraviolet-B, all of which influence plant diseases. Altered pathogen ranges can accelerate disease transmission. This review explores environmental effects on plant diseases, with climate change affecting fungal biogeography, disease incidence, and severity, as well as agricultural production. Moreover, we have discussed how climate change influences pathogen development, host-fungal interactions, the emergence of new races of fungi, and the dissemination of emerging fungal diseases across the globe. The discussion about environment-mediated impact on pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and RNA interference (RNAi) is also part of this review. In conclusion, the review underscores the critical importance of understanding how climate change is reshaping plant-fungal interactions. It highlights the need for continuous research efforts to elucidate the mechanisms driving these changes and their ecological consequences. As the global climate continues to evolve, it is imperative to develop innovative strategies for mitigating the adverse effects of fungal pathogens on plant health and food security.


Assuntos
Biodiversidade , Mudança Climática , Humanos , Temperatura , Plantas , Doenças das Plantas/microbiologia
10.
Sci Total Environ ; 901: 166027, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37541502

RESUMO

The soil organisms are extremely important for the land-based ecosystem. There is a growing interest in studying the variety and composition of the entire underground soil organism community at a large ecological scale. Soil organisms show different patterns in relation to soil physiochemical properties (SPPs) in various ecosystems. However, there is limited knowledge regarding their response to soil vertical profiles (SVPs) in monoculture of Alhagi sparsifolia, which is the primary shrub in the deserts of China, and is well-known for its contributions to sand dune stabilization, traditional Chinese medicine, and forage. Here, we investigated the population dynamics of soil bacteria, fungi, archaea, protists and metazoa across six different SVPs ranging from 0 to 100 cm in monoculture of A. sparsifolia, in its natural desert ecosystem. Our findings indicate that the soil biota communities displayed a declining pattern in the alpha diversity of bacteria, protists, and metazoa with an increase in soil depth. However, the opposite trend was observed for fungi and archaea. The beta diversity of soil biota was significantly affected by SVPs, particularly for metazoa, fungi and protists as revealed by Non-Metric Dimensional Scaling. The most prevalent soil bacterial, fungal, archaeal, protist, and metazoa classes were Actinobacteria, Sordariomycetes, Nitrososphaeria, Filosa-Sarcomonadea, and Nematoda, respectively. The correlation among vertical distribution of the most abundant biotic communities and variations in SPPs exhibited that the variations in total carbon (TC) and total nitrogen (TN) had the most significant influence on bacterial changes, while available potassium (AK) had an impact on fungi. Archaea were affected by TC and pH, protists by the C/N-Ratio and TP, and metazoa by TN, AK, and soil water capacity (SWC). Collectively, our findings provide a new perspective on the vertical distribution and distinct response patterns of soil biota in A. sparsifolia monoculture under natural desert ecosystem of China.

11.
Environ Sci Pollut Res Int ; 30(42): 95296-95311, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37606784

RESUMO

Insects are incredibly successful and diverse organisms, but they also pose a significant threat to agricultural crops, causing potential losses of up to US$470 billion. Among these pests, Plutella xylostella (Linnaeus), a devastating insect that attacks cruciferous vegetables, alone results in monetary losses of around US$4-5 billion worldwide. While insecticides have effectively protected plants under field conditions, their use comes with various environmental and mammalian hazards. Additionally, insects are developing resistance to commonly used insecticides, rendering management strategies less effective. Arthropods employ a range of behavioral and biochemical mechanisms to cope with harmful chemicals, which contribute to the development of resistance. Understanding these mechanisms is crucial for addressing the issue of resistance. It is imperative to integrate strategies that can delay the development of resistance and enhance the efficiency of insecticides. Therefore, we present an overview of insecticide resistance in insects, focusing on P. xylostella, to provide insights into the current resistance status of this pest and propose tactics that can improve the effectiveness of insecticides.


Assuntos
Artrópodes , Inseticidas , Lepidópteros , Animais , Inseticidas/farmacologia , Resistência a Inseticidas , Produtos Agrícolas , Mamíferos
12.
Environ Sci Pollut Res Int ; 30(39): 91237-91246, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37474859

RESUMO

As a lipid-derived compound, jasmonic acid (JA) regulates growth and defense against environmental stresses. An exogenous foliar JA application was investigated in our study (HA; 0.5 mM) on kidney bean plants (Phaseolus vulgaris L.) grown under different salinity stress concentrations (0, 75, and 150 mM NaCl). According to the results, salt concentrations were related to an increase in malondialdehyde (MDA) levels, whereas they declined the chlorophyll content index. In contrast, JA application decreased the level of MDA but increased the chlorophyll content index. Moreover, increasing salinity levels increased proline, phenolic compounds, flavonoids, free amino acid concentrations, and shikimic acid concentrations, as well as the activities of polyphenol oxidase (PPO), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD). In addition, JA applications further increased their concentrations with increasing salinity stress levels. JA application increases salt-induced osmolytes and non-enzymatic antioxidants while increasing enzymatic antioxidant activity, suggesting kidney beans have a strong antioxidant mechanism, which can adapt to salinity stress. Our results showed that exogenous JA foliar applications could enhance the salt tolerance ability of kidney bean plants by upregulating their antioxidant mechanism and osmolytes.


Assuntos
Antioxidantes , Phaseolus , Antioxidantes/metabolismo , Phaseolus/metabolismo , Tolerância ao Sal , Clorofila/metabolismo , Salinidade
13.
J Plant Physiol ; 287: 154033, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37352725

RESUMO

There are many different planting methods for crops, however it is very important to improve the distribution ratio of elements in different organs of crops. Therefore, to understand the effect of different planting patterns on crop element balance, we selected Cyperus esculentus continuous cropping (CC) and C. esculentus - wheat rotation cropping (RC). The leaves, tubers, roots, and soil samples were taken at the mowing time (August 1st, on the 81st day after seed sowing; August 24th, on the 105th day after seed sowing; September 16th, on the 128th day after seed sowing). Results showed that CC and RC had significant effects on soil SO42- and Cl-. With the mowing time, the relative abundance of TN (total nitrogen) in tubers showed an increasing trend, the relative richness of TN in roots decreased, and the relative content of TN in leaves showed no change in the trend under the two planting modes. CC significantly increased the TN/TP (total phosphorus) of leaves, roots, and tubers. However, RC significantly increased the AN (available nitrogen)/AP (available phosphorus) of soil. The random forest analysis (RF) showed that abiotic factors contributed the most to TN/TK (total potassium) of roots, followed by TN/TK of tubers and TP/TK of roots. We found that abiotic factors had no significant impact on TP/TK of leaves and TN/TP of tubers. As expected, different planting patterns alter the plant's N (nitrogen)/P (phosphorus)/K (potassium), which in turn may modify N and P conservation strategies.


Assuntos
Cyperus , Solo , Nitrogênio , Fósforo , Potássio/análise , China
14.
Cells ; 12(11)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37296667

RESUMO

Fungi are an important group of microorganisms that play crucial roles in a variety of ecological and biotechnological processes. Fungi depend on intracellular protein trafficking, which involves moving proteins from their site of synthesis to the final destination within or outside the cell. The soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are vital components of vesicle trafficking and membrane fusion, ultimately leading to the release of cargos to the target destination. The v-SNARE (vesicle-associated SNARE) Snc1 is responsible for anterograde and retrograde vesicle trafficking between the plasma membrane (PM) and Golgi. It allows for the fusion of exocytic vesicles to the PM and the subsequent recycling of Golgi-localized proteins back to the Golgi via three distinct and parallel recycling pathways. This recycling process requires several components, including a phospholipid flippase (Drs2-Cdc50), an F-box protein (Rcy1), a sorting nexin (Snx4-Atg20), a retromer submit, and the COPI coat complex. Snc1 interacts with exocytic SNAREs (Sso1/2, Sec9) and the exocytic complex to complete the process of exocytosis. It also interacts with endocytic SNAREs (Tlg1 and Tlg2) during endocytic trafficking. Snc1 has been extensively investigated in fungi and has been found to play crucial roles in various aspects of intracellular protein trafficking. When Snc1 is overexpressed alone or in combination with some key secretory components, it results in enhanced protein production. This article will cover the role of Snc1 in the anterograde and retrograde trafficking of fungi and its interactions with other proteins for efficient cellular transportation.


Assuntos
Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fusão de Membrana , Proteínas R-SNARE/metabolismo , Transporte Proteico , Fungos/metabolismo
15.
Front Plant Sci ; 14: 1162572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123851

RESUMO

Revealing the complex relationships between management practices, crop growth, forage nutritive value and soil quality will facilitate the development of more sustainable agricultural and livestock production systems. Cyperus esculentus is known as the king of oil crops and high-quality forage. However, there is little information about the effects of different planting modes {continuous cropping (CC)/rotation cropping (RC)} and initial mowing time on the plant nutrient accumulation and forage nutritive value. Here, in a field experiment, we designed two planting patterns, C. esculentus CC and C. esculentus - wheat RC. The leaves, tubers, roots, and soil samples were collected at three mowing time (on the 78th, 101th, and 124th days after seed sowing). Results revealed that RC significantly increased the total nitrogen (TN) and potassium (TK) content of the tuber (p<0.05), while significantly decreased the TN, total phosphorus (TP), crude protein (CP), and acid detergent fiber (ADF) contents of the leaves. Under the CC pattern, the TN, TP, and TK content of roots increased significantly on the 78th days after seed sowing, and the TK content of tubers increased significantly. Under the RC pattern, the ether extract (EE) content of tubers increased significantly on the 124th days after seed sowing, while the CP and TN content of leaves decreased significantly. Correlation analysis showed that soil pH was negatively correlated with TN content in leaves, tubers, and roots. The structural equation model showed that the soil pH directly affected the plant nutrient accumulation and forage nutritive value (ß=0.68) via regulating these properties by changing soil available nutrients, anions, cations, and total nutrients. Overall, we propose that RC for C. esculentus-wheat is should not be recommended to maximize tubers and forage yield.

16.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119304, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35671849

RESUMO

In recent years, it has been established that microRNAs (miRNAs) are critical for various plant physiological regulations in numerous species. Next-generation sequencing technologies have aided to our understandings related to the critical role of miRNAs during environmental stress conditions and plant development. Light influences not just miRNA accumulation but also their biological activities via regulating miRNA gene transcription, biosynthesis, and RNA-induced silencing complex (RISC) activity. Light-regulated routes, processes, and activities can all be affected by miRNAs. Here, we will explore how light affects miRNA gene expression and how conserved and novel miRNAs exhibit altered expression across different plant species in response to variable light quality. Here, we will mainly discuss recent advances in understanding how miRNAs are involved in photomorphogenesis, and photoperiod-dependent plant biological processes such as cell proliferation, metabolism, chlorophyll pigment synthesis and axillary bud growth. The review concludes by presenting future prospects via hoping that light-responsive miRNAs can be exploited in a better way to engineer economically important crops to ensure future food security.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas/metabolismo , Transcrição Gênica
17.
Plants (Basel) ; 11(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365433

RESUMO

Plants may experience adverse effects from Cadmium (Cd). As a result of its toxicity and mobility within the soil-plant continuum, it is attracting the attention of soil scientists and plant nutritionists. In this study, we subjected young Eruca sativa Mill. seedlings to different levels of Cd applications (0, 1.5, 6 and 30 µmol/L) via pot experiment to explore its morpho-physio-biochemical adaptations. Our results revealed a significant Cd accumulation in leaves at high Cd stress. It was also demonstrated that Cd stress inhibited photosynthetic rate and pigment levels, ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD) enzyme activities, and increased malondialdehyde (MDA) levels. Conversely, the concentration of total ascorbate (TAS) increased at all levels of Cd application, whereas that of ascorbic acid (ASA), and dehydroascorbate (DHA) increased at 1.5 (non-significant), 6, 30 and 6 µmol/L (significant), though their concentrations decreased non-significantly at 30 µmol/L application. In conclusion, Cd-subjected E. sativa seedlings diverted much energy from growth towards the synthesis of anti-oxidant metabolites and osmolytes. However, they did not seem to have protected the E. sativa seedlings from Cd-induced oxidative stress, causing a decrease in osmotic adjustment, and an increase in oxidative damage, which resulted in a reduction in photosynthesis and growth. Accordingly, we recommend that the cultivation of E. sativa should be avoided on soil with Cd contamination.

18.
Plants (Basel) ; 11(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36235345

RESUMO

It has been shown that jasmonic acid (JA) can alleviate drought stress. Nevertheless, there are still many questions regarding the JA-induced physiological and biochemical mechanisms that underlie the adaptation of plants to drought stress. Hence, the aim of this study was to investigate whether JA application was beneficial for the antioxidant activity, plant performance, and growth of Grewia asiatica L. Therefore, a study was conducted on G. asiatica plants aged six months, exposing them to 100% and 60% of their field capacity. A JA application was only made when the plants were experiencing moderate drought stress (average stem water potential of 1.0 MPa, considered moderate drought stress), and physiological and biochemical measures were monitored throughout the 14-day period. In contrast to untreated plants, the JA-treated plants displayed an improvement in plant growth by 15.5% and increased CO2 assimilation (AN) by 43.9% as well as stomatal conductance (GS) by 42.7% on day 3. The ascorbate peroxidase (APX), glutathione peroxidase (GPX), and superoxide dismutase (SOD) activities of drought-stressed JA-treated plants increased by 87%, 78%, and 60%, respectively, on day 3. In addition, G. asiatica plants stressed by drought accumulated 34% more phenolics and 63% more antioxidants when exposed to JA. This study aimed to understand the mechanism by which G. asiatica survives in drought conditions by utilizing the JA system.

19.
Cells ; 11(18)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139379

RESUMO

One of the most damaging issues to cultivatable land is soil salinity. While salt stress influences plant growth and yields at low to moderate levels, severe salt stress is harmful to plant growth. Mineral shortages and toxicities frequently exacerbate the problem of salinity. The growth of many plants is quantitatively reduced by various levels of salt stress depending on the stage of development and duration of stress. Plants have developed various mechanisms to withstand salt stress. One of the key strategies is the utilization of microRNAs (miRNAs) that can influence gene regulation at the post-transcriptional stage under different environmental conditions, including salinity. Here, we have reviewed the miRNA-mediated adaptations of various plant species to salt stress and other abiotic variables. Moreover, salt responsive (SR)-miRNAs, their targets, and corresponding pathways have also been discussed. The review article concludes by suggesting that the utilization of miRNAs may be a vital strategy to generate salt tolerant crops ensuring food security in the future.


Assuntos
MicroRNAs , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Estresse Salino/genética , Solo , Estresse Fisiológico/genética
20.
Environ Res ; 215(Pt 2): 114282, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36122702

RESUMO

Drought is common in most regions of the world, and it has a significant impact on plant growth and development. Plants, on the other hand, have evolved their own defense systems to deal with the extreme weather. The reprogramming of gene expression by microRNAs (miRNAs) is one of these defense mechanisms. miRNAs are short noncoding RNAs that have emerged as key post-transcriptional gene regulators in a variety of species. Drought stress modulates the expression of certain miRNAs that are functionally conserved across plant species. These characteristics imply that miRNA-based genetic changes might improve drought resistance in plants. This study highlights current knowledge of plant miRNA biogenesis, regulatory mechanisms and their role in drought stress responses. miRNAs functions and their adaptations by plants during drought stress has also been explained that can be exploited to promote drought-resistance among economically important crops.


Assuntos
Secas , MicroRNAs , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA