Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Microbiol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532184

RESUMO

Drug repurposing constitutes a strategy to combat antimicrobial resistance, by using agents with known safety, pharmacokinetics, and pharmacodynamics. Previous studies have implemented new fusidic acid (FA) front-loading-dose regimens, allowing higher serum levels than those achievable with ordinary doses. As susceptibility breakpoints are affected by serum level, we evaluated the repurposing of FA as an antimicrobial product against enterococci. FA minimum inhibitory concentrations (MICs) against standard enterococci strains; Enterococcus faecalis ATCC 29212 and Enterococcus faecium ATCC 27270 were 2 and 4 µg/mL, respectively. The MIC against 98 enterococcal clinical isolates was ≤ 8 µg/mL; all would be susceptible if categorized according to recalculated breakpoints (≥ 16 µg/mL), based on the serum level achieved using the front-loading regimen. FA administration in vivo, using the BALB/c mouse infection model, significantly reduced bacterial burden by two to three log10 units in the liver and spleen of mice infected with vancomycin-susceptible and -resistant strains. Exposure of the standard enterococcal strains to increasing, but not fixed, FA concentrations resulted in resistant strains (MIC = 128 µg/mL), with thicker cell walls and slower growth rates. Only one mutation (M651I) was detected in the fusA gene of the resistant strain derived from serial passage of E. faecium ATCC 27270, which was retained in the revertant strain after passage in the FA-free medium. In conclusion, FA can be repurposed as an antimicrobial drug against enterococci with a low probability of mutational resistance development, and can be employed for treatment of infections attributable to vancomycin-resistant enterococci.

2.
Molecules ; 27(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056761

RESUMO

BACKGROUND: A high mortality rate is associated with about 80% of all infections worldwide, mainly due to antimicrobial resistance. Various antimicrobial and cytotoxic activities have been proposed for Meliaceae species. This study aimed to evaluate the in vitro anti-virulence and cytotoxic effect of the leaf extracts of Aphanamixis polystachya, Toona ciliata and Melia azedarach against five MRSA strains and on three cancer cell lines, followed by biological correlation to their encompassed phytoconstituents. MATERIAL AND METHODS: We explored three plants of this family against a panel of Methicillin-resistant Staphylococcus aureus (MRSA) strains and several cancer cell lines to select the most promising candidates for further in vivo and preclinical studies. The phytochemical composition was evaluated by UHPLC-QTOF-MS untargeted profiling. Cell viability was assessed by SRB assay. Minimum Inhibitory Concentration was carried out by using the agar micro-dilution technique. Inhibition of biofilm formation and preformed biofilm disruption were assessed spectrophotomertically, according to the Sultan and Nabil method (2019). RESULTS: A total of 279 compounds were putatively annotated to include different phytochemical classes, such as flavonoids (108), limonoids/terpenoids (59), phenolic acids (49) and lower-molecular-weight phenolics (39). A. polystachya extract showed the most potent cytotoxic activity against Huh-7, DU-145 and MCF-7 cell lines (IC50 = 3, 3.5 and 13.4 µg mL-1, respectively), followed by M. azedarach, with no effect recorded for T. ciliata extract. Furthermore, both A. polystachya and M. azedarach extracts showed promising anti-virulence and antimicrobial activities, with A. polystachya being particularly active against MRSA. These two latter extracts could inhibit and disrupt the biofilm, formed by MRSA, at sub-lethal concentrations. Interestingly, the extracts inhibited hemolysin-α enzyme, thus protecting rabbit RBCs from lysis. A. polystachya extract reduced the pigmentation and catalase enzyme activity of tested pigmented strains better than M. azedarach at both tested sub-MICs. Consequently, susceptibility of the extract-treated cells to oxidant killing by 200 mM H2O2 increased, leading to faster killing of the cells within 120 min as compared to the extract-non-treated cells, likely due to the lower antioxidant-scavenging activity of cells exhibiting less staphyloxanthin production. CONCLUSION: These findings suggested that both A. polystachya and M. azedarach natural extracts are rich in bioactive compounds, mainly limonoids, phenolics and oxygenated triterpenoids, which can combat MRSA biofilm infections and could be considered as promising sources of therapeutic cytotoxic, antibiofilm and anti-virulence agents.


Assuntos
Antibacterianos/farmacologia , Meliaceae/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Antibacterianos/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Testes de Sensibilidade Microbiana , Análise Multivariada , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Virulência/efeitos dos fármacos
3.
Antibiotics (Basel) ; 10(8)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34438957

RESUMO

(1) Background: Bacterial resistance to antibiotics is a global life-threatening issue. Antivirulence therapy is a promising approach to combat bacterial infections as it disarms the bacteria from their virulence factors with reduced selective pressure and a lower chance of resistance. (2) Methods: Callistemon citrinus leaf extract and its major constituent, Pulverulentone A, were tested for their ability to inhibit biofilm, exopolysaccharides, pyocyanin and proteases produced by MDR P. aeruginosa. In addition, a Galleria mellonella larvae model was employed to evaluate the in vivo cytotoxicity of Pulverulentone A and its ability to combat Pseudomonas infection. Docking study was further performed to investigate Pulverulentone A druggability against main quorum sensing (QS) targets expressed by P. aeruginosa; (3) Results: Both C. citrinus extract and the isolated compound could inhibit biofilm formation, extracellular polymeric substances (EPS) and pigment production by the tested isolates. Unexpectedly, no significant inhibition was observed on proteases production. The in silico docking analysis revealed good interactions of Pulverulentone A with all QS targets examined (LasR, MyfR/PqsR, QscR). Pulverulentone A was safe up to 400 µg·mL-1 in Galleria caterpillars. Moreover, pre-treatment of P. aeruginosa with Pulverulentone A slightly enhanced the survival of the infected larvae. (4) Conclusions: The present study proves Pulverulentone A safety with significant in vitro and in silico antivirulence potential against P. aeruginosa.

4.
Antibiotics (Basel) ; 9(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036456

RESUMO

Bacterial biofilm contributes to antibiotic resistance. Developing antibiofilm agents, more favored from natural origin, is a potential method for treatment of highly virulent multidrug resistant (MDR) bacterial strains; The potential of Pimenta dioica and Pimenta racemosa essential oils (E.Os) antibacterial and antibiofilm activities in relation to their chemical composition, in addition to their ability to treat Acinetobacter baumannii wound infection in mice model were investigated; P. dioica leaf E.O at 0.05 µg·mL-1 efficiently inhibited and eradicated biofilm formed by A. baumannii by 85% and 34%, respectively. Both P. diocia and P. racemosa leaf E.Os showed a bactericidal action against A. baumanii within 6h at 2.08 µg·mL-1. In addition, a significant reduction of A. baumannii microbial load in mice wound infection model was found. Furthermore, gas chromatography mass spectrometry analysis revealed qualitative and quantitative differences among P. racemosa and P. dioica leaf and berry E.Os. Monoterpene hydrocarbons, oxygenated monoterpenes, and phenolics were the major detected classes. ß-Myrcene, limonene, 1,8-cineole, and eugenol were the most abundant volatiles. While, sesquiterpenes were found as minor components in Pimenta berries E.O; Our finding suggests the potential antimicrobial activity of Pimenta leaf E.O against MDR A. baumannii wound infections and their underlying mechanism and to be further tested clinically as treatment for MDR A. baumannii infections.

5.
Int J Pharm ; 549(1-2): 249-260, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30077759

RESUMO

Development of efficient ocular drug delivery system for antifungal drugs becomes a must nowadays to face and eradicate the widely spread ophthalmic fungal infections. Itraconazole, a triazole antifungal, is struggling to penetrate the cornea and subsequently, its efficacy is limited. The aim of this study was to enhance itraconazole corneal penetration through utilizing the minimum surfactant amount in presence of ß-cyclodextrin which acted as a dissolution and permeation enhancer. ß-Cyclodextrin consolidated micellar dispersions (CCMD) were prepared after an initial screening to select the composition of surfactant(s). The preparation was done according to a modified melt dispersion technique. The prepared CCMD were characterized through the analysis of their particle size, zeta potential and solubilization efficiency. The optimum formula was chosen based on a factorial response surface analysis and it was composed of 17:1 w/w surfactant/drug, 30:1 w/w cyclodextrin/drug ratios and 0.02% polyethylene oxide. This formula was subjected to in vitro characterization including release, imaging by transmission electron microscope, mucoadhesion, stability, in addition to the determination of the minimum inhibitory concentration. Moreover, the ex vivo/in vivo permeation, safety and efficacy profiles were determined. The optimized CCMD formula was found to be significantly safe, stable, mucoadhesive and efficient to permeate the drug through rabbits' corneas. Consequently, the optimized CCMD formulation can be a promising, safe and efficient platform for the transcorneal delivery of lipophilic drugs including most antifungals.


Assuntos
Antifúngicos/administração & dosagem , Aspergilose/tratamento farmacológico , Córnea/efeitos dos fármacos , Excipientes/química , Infecções Oculares Fúngicas/tratamento farmacológico , Itraconazol/administração & dosagem , Ceratite/tratamento farmacológico , Absorção Ocular , beta-Ciclodextrinas/química , Adesividade , Administração Oftálmica , Animais , Antifúngicos/química , Antifúngicos/metabolismo , Aspergilose/metabolismo , Aspergilose/microbiologia , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/crescimento & desenvolvimento , Córnea/metabolismo , Córnea/microbiologia , Modelos Animais de Doenças , Composição de Medicamentos , Liberação Controlada de Fármacos , Infecções Oculares Fúngicas/metabolismo , Infecções Oculares Fúngicas/microbiologia , Itraconazol/química , Itraconazol/metabolismo , Ceratite/metabolismo , Ceratite/microbiologia , Masculino , Micelas , Tamanho da Partícula , Permeabilidade , Coelhos , Solubilidade , Tecnologia Farmacêutica/métodos
6.
Bioresour Technol ; 232: 364-371, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28254731

RESUMO

An artificial microalgal-bacterial consortium was used to remediate a mixture of analgesics (ketoprofen, paracetamol and aspirin) in a stirred-tank photobioreactor. A hydraulic retention time (HRT) of 3days supported poor treatment because of the formation of p-aminophenol (paracetamol toxic metabolite). Increasing the HRT to 4days enhanced the bioremediation efficiency. After applying an acclimatization regime, 95% removal of the analgesics mixture, p-aminophenol and COD reduction were achieved. However, shortening the HRT again to 3days neither improved the COD reduction nor ketoprofen removal. Applying continuous illumination achieved the best analgesics removal results. The harvested biomass contained 50% protein, which included almost all essential amino acids. The detected fatty acid profile suggested the harvested biomass to be a good biodiesel-producing candidate. The water-extractable fraction possessed the highest phenolic content and antioxidant capacity. These findings suggest the whole process to be an integrated eco-friendly and cost-efficient strategy for remediating pharmaceutical wastewater.


Assuntos
Bactérias/metabolismo , Biomassa , Microalgas/metabolismo , Consórcios Microbianos , Fotobiorreatores/microbiologia , Acetaminofen/isolamento & purificação , Aminoácidos/análise , Analgésicos/isolamento & purificação , Aspirina/isolamento & purificação , Técnicas de Cultura Celular por Lotes , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Clorofila/análise , Clorofila A , Ácidos Graxos/análise , Concentração Inibidora 50 , Preparações Farmacêuticas , Testes de Toxicidade
7.
Biotechnol Lett ; 38(9): 1493-502, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27271522

RESUMO

OBJECTIVE: To test the toxicity of ketoprofen (a commonly-used NSAIDs) using two microalgal strains and Artemia sp. following the isolation of bacterial and microalgal strains and testing their ability to biodegrade and tolerate ketoprofen. RESULTS: Chlorella sp. was the most resistant to ketoprofen. A defined bacterial consortium (K2) degraded 5 mM ketoprofen as a sole carbon source both in the dark or continuous illumination. Ketoprofen did not undergo photodegradation. In the dark, biodegradation was faster with a lag phase of 10 h, 41% COD removal and 82 % reduction in toxicity. The consortium degraded up to 16 mM ketoprofen. The consortium was composed of four bacterial isolates that were identified. MS/MS analysis suggested a ketoprofen biodegradation pathway that has not been previously reported. Combining Chlorella sp. and the K2 consortium, ketoprofen was degraded within 7 days under a diurnal cycle of 12 h light/12 h dark. CONCLUSION: The feasibility of using a microalgal-bacterial system to treat pharmaceutical wastewater is promising for the reduction of the process cost and providing a safer technology for pharmaceutical wastewater treatment.


Assuntos
Bactérias/metabolismo , Cetoprofeno/farmacologia , Microalgas/metabolismo , Bactérias/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Fotoquímica , Spirulina/efeitos dos fármacos , Spirulina/metabolismo , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA