Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cancer Gene Ther ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622340

RESUMO

Novel therapeutic strategies are urgently required for osteosarcoma, given the early age at onset and persistently high mortality rate. Modern transcriptomics techniques can identify differentially expressed genes (DEGs) that may serve as biomarkers and therapeutic targets, so we screened for DEGs in osteosarcoma. We found that osteosarcoma cases could be divided into fair and poor survival groups based on gene expression profiles. Among the genes upregulated in the poor survival group, siRNA-mediated knockdown of the glycosylation-related gene C1GALT1 suppressed osteosarcoma cell proliferation in culture. Gene expression, phosphorylation, and glycome array analyses also demonstrated that C1GALT1 is required to maintain ERK signaling and cell cycle progression. Moreover, the C1GALT1 inhibitor itraconazole suppressed osteosarcoma cell proliferation in culture, while doxycycline-induced shRNA-mediated knockdown reduced xenograft osteosarcoma growth in mice. Elevated C1GALT1 expression is a potential early predictor of poor prognosis, while pharmacological inhibition may be a feasible treatment strategy for osteosarcoma.

2.
Blood Adv ; 8(5): 1258-1271, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38127276

RESUMO

ABSTRACT: Aberrant micro-RNA (miRNA) expression profiles have been associated with disease progression and clinical outcome in pediatric cancers. However, few studies have analyzed genome-wide dysregulation of miRNAs and messenger RNAs (mRNAs) in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). To identify novel prognostic factors, we comprehensively investigated miRNA and mRNA sequencing (miRNA-seq and mRNA-seq) data in pediatric BCP-ALL samples with poor outcome. We analyzed 180 patients, including 43 matched pairs at diagnosis and relapse. Consensus clustering of miRNA expression data revealed a distinct profile characterized by mainly downregulation of miRNAs (referred to as an miR-low cluster [MLC]). The MLC profile was not associated with any known genetic subgroups. Intriguingly, patients classified as MLC had significantly shorter event-free survival (median 21 vs 33 months; log-rank P = 3 ×10-5). Furthermore, this poor prognosis was retained even in hyperdiploid ALL. This poor prognostic MLC profiling was confirmed in the validation cohort. Notably, non-MLC profiling at diagnosis (n = 9 of 23; Fisher exact test, P = .039) often changed into MLC profiling at relapse for the same patient. Integrated analysis of miRNA-seq and mRNA-seq data revealed that the transcriptional profile of MLC was characterized by enrichment of MYC target and oxidative phosphorylation genes, reduced intron retention, and low expression of DICER1. Thus, our miRNA-mRNA integration approach yielded a truly unbiased molecular stratification of pediatric BCP-ALL cases based on a novel prognostic miRNA signature, which may lead to better clinical outcomes.


Assuntos
Linfoma de Burkitt , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Criança , MicroRNAs/genética , MicroRNAs/metabolismo , RNA-Seq , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Recidiva , RNA Mensageiro/genética , Ribonuclease III , RNA Helicases DEAD-box
3.
Sci Adv ; 9(50): eadj4407, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091391

RESUMO

Myeloid/natural killer (NK) cell precursor acute leukemia (MNKPL) has been described on the basis of its unique immunophenotype and clinical phenotype. However, there is no consensus on the characteristics for identifying this disease type because of its rarity and lack of defined distinctive molecular characteristics. In this study, multiomics analysis revealed that MNKPL is distinct from acute myeloid leukemia, T cell acute lymphoblastic leukemia, and mixed-phenotype acute leukemia (MPAL), and NOTCH1 and RUNX3 activation and BCL11B down-regulation are hallmarks of MNKPL. Although NK cells have been classically considered to be lymphoid lineage-derived, the results of our single-cell analysis using MNKPL cells suggest that NK cells and myeloid cells share common progenitor cells. Treatment outcomes for MNKPL are unsatisfactory, even when hematopoietic cell transplantation is performed. Multiomics analysis and in vitro drug sensitivity assays revealed increased sensitivity to l-asparaginase and reduced levels of asparagine synthetase (ASNS), supporting the clinically observed effectiveness of l-asparaginase.


Assuntos
Asparaginase , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/terapia , Doença Aguda , Células Matadoras Naturais , Resultado do Tratamento , Proteínas Repressoras , Proteínas Supressoras de Tumor
4.
Cell Genom ; 3(12): 100426, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38116120

RESUMO

Acute myeloid leukemia (AML) and myeloid neoplasms develop through acquisition of somatic mutations that confer mutation-specific fitness advantages to hematopoietic stem and progenitor cells. However, our understanding of mutational effects remains limited to the resolution attainable within immunophenotypically and clinically accessible bulk cell populations. To decipher heterogeneous cellular fitness to preleukemic mutational perturbations, we performed single-cell RNA sequencing of eight different mouse models with driver mutations of myeloid malignancies, generating 269,048 single-cell profiles. Our analysis infers mutation-driven perturbations in cell abundance, cellular lineage fate, cellular metabolism, and gene expression at the continuous resolution, pinpointing cell populations with transcriptional alterations associated with differentiation bias. We further develop an 11-gene scoring system (Stem11) on the basis of preleukemic transcriptional signatures that predicts AML patient outcomes. Our results demonstrate that a single-cell-resolution deep characterization of preleukemic biology has the potential to enhance our understanding of AML heterogeneity and inform more effective risk stratification strategies.

5.
Cell Rep ; 42(9): 113098, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37714156

RESUMO

Decitabine (DAC) is clinically used to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Our genome-wide CRISPR-dCas9 activation screen using MDS-derived AML cells indicates that mitotic regulation is critical for DAC resistance. DAC strongly induces abnormal mitosis (abscission failure or tripolar mitosis) in human myeloid tumors at clinical concentrations, especially in those with TP53 mutations or antecedent hematological disorders. This DAC-induced mitotic disruption and apoptosis are significantly attenuated in DNMT1-depleted cells. In contrast, overexpression of Dnmt1, but not the catalytically inactive mutant, enhances DAC-induced mitotic defects in myeloid tumors. We also demonstrate that DAC-induced mitotic disruption is enhanced by pharmacological inhibition of the ATR-CLSPN-CHK1 pathway. These data challenge the current assumption that DAC inhibits leukemogenesis through DNMT1 inhibition and subsequent DNA hypomethylation and highlight the potent activity of DAC to disrupt mitosis through aberrant DNMT1-DNA covalent bonds.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Humanos , Decitabina/farmacologia , Decitabina/uso terapêutico , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Antimetabólitos Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/patologia , Metilação de DNA/genética , DNA , Proteínas Adaptadoras de Transdução de Sinal/genética
7.
Mol Cell ; 83(14): 2417-2433.e7, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37348497

RESUMO

Aged hematopoietic stem cells (HSCs) display diminished self-renewal and a myeloid differentiation bias. However, the drivers and mechanisms that underpin this fundamental switch are not understood. HSCs produce genotoxic formaldehyde that requires protection by the detoxification enzymes ALDH2 and ADH5 and the Fanconi anemia (FA) DNA repair pathway. We find that the HSCs in young Aldh2-/-Fancd2-/- mice harbor a transcriptomic signature equivalent to aged wild-type HSCs, along with increased epigenetic age, telomere attrition, and myeloid-biased differentiation quantified by single HSC transplantation. In addition, the p53 response is vigorously activated in Aldh2-/-Fancd2-/- HSCs, while p53 deletion rescued this aged HSC phenotype. To further define the origins of the myeloid differentiation bias, we use a GFP genetic reporter to find a striking enrichment of Vwf+ myeloid and megakaryocyte-lineage-biased HSCs. These results indicate that metabolism-derived formaldehyde-DNA damage stimulates the p53 response in HSCs to drive accelerated aging.


Assuntos
Envelhecimento , Aldeídos , Dano ao DNA , Hematopoese , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Aldeídos/metabolismo , Transcriptoma , Análise da Expressão Gênica de Célula Única , Células-Tronco Hematopoéticas/citologia , Células Mieloides/citologia , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia
8.
Oncogene ; 41(46): 4994-5007, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36319669

RESUMO

Neuroblastomas require novel therapies that are based on the exploitation of their biological mechanism. To address this need, we analyzed the DNA methylation and expression datasets of neuroblastomas, extracted a candidate gene characterizing the aggressive features, and conducted functional studies. Based on the DNA methylation data, we identified a subgroup of neuroblastoma cases with 11q loss of heterozygosity with extremely poor prognosis. PHGDH, a serine metabolism-related gene, was extracted as a candidate with strong expression and characteristic methylation in this subgroup as well as in cases with MYCN amplification. PHGDH inhibition suppressed neuroblastoma cell proliferation in vitro and in vivo, indicating that the inhibition of serine metabolism by PHGDH inhibitors is a therapeutic alternative for neuroblastoma. Inhibiting the arginine metabolism, which is closely related to serine metabolism using arginine deiminase, had a combination effect both in vitro and in vivo, especially on extracellular arginine-dependent neuroblastoma cells with ASS1 deficiency. Expression and metabolome analyses of post-dose cells confirmed the synergistic effects of treatments targeting serine and arginine indicated that xCT inhibitors that inhibit cystine uptake could be candidates for further combinatorial treatment. Our results highlight the rational therapeutic strategy of targeting serine/arginine metabolism for intractable neuroblastoma.


Assuntos
Metilação de DNA , Neuroblastoma , Humanos , Metilação de DNA/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proliferação de Células/genética , Serina/metabolismo , Arginina/genética , Arginina/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
9.
Nat Commun ; 13(1): 4501, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042201

RESUMO

KMT2A-rearranged infant acute lymphoblastic leukemia (ALL) represents the most refractory type of childhood leukemia. To uncover the molecular heterogeneity of this disease, we perform RNA sequencing, methylation array analysis, whole exome and targeted deep sequencing on 84 infants with KMT2A-rearranged leukemia. Our multi-omics clustering followed by single-sample and single-cell inference of hematopoietic differentiation establishes five robust integrative clusters (ICs) with different master transcription factors, fusion partners and corresponding stages of B-lymphopoietic and early hemato-endothelial development: IRX-type differentiated (IC1), IRX-type undifferentiated (IC2), HOXA-type MLLT1 (IC3), HOXA-type MLLT3 (IC4), and HOXA-type AFF1 (IC5). Importantly, our deep mutational analysis reveals that the number of RAS pathway mutations predicts prognosis and that the most refractory subgroup of IC2 possesses 100% frequency and the heaviest burden of RAS pathway mutations. Our findings highlight the previously under-appreciated intra- and inter-patient heterogeneity of KMT2A-rearranged infant ALL and provide a rationale for the future development of genomics-guided risk stratification and individualized therapy.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fusão Gênica , Humanos , Lactente , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Transcrição/genética
10.
Cancer Sci ; 113(1): 41-52, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34716967

RESUMO

Due to the considerable success of cancer immunotherapy for leukemia, the tumor immune environment has become a focus of intense research; however, there are few reports on the dynamics of the tumor immune environment in leukemia. Here, we analyzed the tumor immune environment in pediatric B cell precursor acute lymphoblastic leukemia by analyzing serial bone marrow samples from nine patients with primary and recurrent disease by mass cytometry using 39 immunophenotype markers, and transcriptome analysis. High-dimensional single-cell mass cytometry analysis elucidated a dynamic shift of T cells from naïve to effector subsets, and clarified that, during relapse, the tumor immune environment comprised a T helper 1-polarized immune profile, together with an increased number of effector regulatory T cells. These results were confirmed in a validation cohort using conventional flow cytometry. Furthermore, RNA transcriptome analysis identified the upregulation of immune-related pathways in B cell precursor acute lymphoblastic leukemia cells during relapse, suggesting interaction with the surrounding environment. In conclusion, a tumor immune environment characterized by a T helper 1-polarized immune profile, with an increased number of effector regulatory T cells, could contribute to the pathophysiology of recurrent B cell precursor acute lymphoblastic leukemia. This information could contribute to the development of effective immunotherapeutic approaches against B cell precursor acute lymphoblastic leukemia relapse.


Assuntos
Biomarcadores Tumorais/genética , Medula Óssea/imunologia , Perfilação da Expressão Gênica/métodos , Recidiva Local de Neoplasia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Adolescente , Medula Óssea/química , Criança , Pré-Escolar , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Masculino , Recidiva Local de Neoplasia/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Análise de Sequência de RNA , Análise de Célula Única , Microambiente Tumoral , Regulação para Cima , Adulto Jovem
11.
Cancer Sci ; 113(4): 1535-1541, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34971484

RESUMO

Neuroblastoma (NB) and pheochromocytoma (PCC) are derived from neural crest cells (NCCs); however, composite tumors with NB and PCC are rare, and their underlying molecular mechanisms remain unknown. To address this issue, we performed exome and transcriptome sequencing with formalin-fixed paraffin-embedded (FFPE) samples from the NB, PCC, and mixed lesions in a patient with a composite tumor. Whole-exome sequencing revealed that most mutations (80%) were shared by all samples, indicating that NB and PCC evolved from the same clone. Notably, all samples harbored both mutation and focal amplification in the FGFR1 oncogene, resulting in an extraordinarily high expression, likely to be the main driver of this tumor. Transcriptome sequencing revealed undifferentiated expression profiles for the NB lesions. Considering that a metastatic lesion was also composite, most likely, the primitive founding lesions should differentiate into both NB and PCC. This is the first reported case with composite-NB and PCC genetically proven to harbor an oncogenic FGFR1 alteration of a common cellular origin.


Assuntos
Neoplasias das Glândulas Suprarrenais , Neuroblastoma , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/patologia , Humanos , Mutação , Neuroblastoma/genética , Neuroblastoma/patologia , Oncogenes , Feocromocitoma/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
12.
PLoS One ; 16(1): e0245526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33465163

RESUMO

Neuroblastoma, the most common extracranial solid malignancy among children, originates from undifferentiated neural crest cells (NCC). Despite recent intensified treatment, high-risk patients still have a high mortality rate. To explore a new therapeutic strategy, we performed an integrated genomic and transcriptomic analysis of 30 high-risk neuroblastoma cases. Based on the expression profiling of RNA sequencing, neuroblastoma was classified into Mesenchymal (MES; n = 5) and Noradrenergic (ADRN; n = 25) clusters, as previously reported in the super-enhancer landscape. The expression patterns in MES-cluster cases were similar to normal adrenal glands, with enrichment in secretion-related pathways, suggesting chromaffin cell-like features built from NCC-derived Schwann cell precursors (SCPs). In contrast, neuron-related pathways were enriched in the ADRN-cluster, indicating sympathoblast features reported to originate from NCC but not via SCPs. Thus, MES- and ADRN-clusters were assumed to be corresponding to differentiation pathways through SCP and sympathoblast, respectively. ADRN-cluster cases were further classified into MYCN- and ATRX-clusters, characterized by genetic alterations, MYCN amplifications and ATRX alterations, respectively. MYCN-cluster cases showed high expression of ALDH18A1, encoding P5CS related to proline production. As reported in other cancers, this might cause reprogramming of proline metabolism leading to tumor specific proline vulnerability candidate for a target therapy of metabolic pathway. In ATRX-cluster, SLC18A2 (VMAT2), an enzyme known to prevent cell toxicity due to the oxidation of dopamine, was highly expressed and VMAT2 inhibitor (GZ-793A) represented significant attenuation of cell growth in NB-69 cell line (high SLC18A2 expression, no MYCN amplification) but not in IMR-32 cell line (MYCN amplification). In addition, the correlation of VMAT2 expression with metaiodobenzylguanidine (MIBG) avidity suggested a combination of VMAT2 inhibitor and MIBG radiation for a novel potential therapeutic strategy in ATRX-cluster cases. Thus, targeting the characteristics of unique neuroblastomas may prospectively improve prognosis.


Assuntos
Perfilação da Expressão Gênica , Predisposição Genética para Doença/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Análise por Conglomerados , Dosagem de Genes , Humanos , Mutação , Neuroblastoma/genética
13.
Blood Adv ; 4(20): 5165-5173, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33095873

RESUMO

Recent genetic studies using high-throughput sequencing have disclosed genetic alterations in B-cell precursor acute lymphoblastic leukemia (B-ALL). However, their effects on clinical outcomes have not been fully investigated. To address this, we comprehensively examined genetic alterations and their prognostic impact in a large series of pediatric B-ALL cases. We performed targeted capture sequencing in a total of 1003 pediatric patients with B-ALL from 2 Japanese cohorts. Transcriptome sequencing (n = 116) and/or array-based gene expression analysis (n = 120) were also performed in 203 (84%) of 243 patients who were not categorized into any disease subgroup by panel sequencing or routine reverse transcription polymerase chain reaction analysis for major fusions in B-ALL. Our panel sequencing identified novel recurrent mutations in 2 genes (CCND3 and CIC), and both had positive correlations with ETV6-RUNX1 and hypodiploid ALL, respectively. In addition, positive correlations were also newly reported between TCF3-PBX1 ALL with PHF6 mutations. In multivariate Cox proportional hazards regression models for overall survival, TP53 mutation/deletion, hypodiploid, and MEF2D fusions were selected in both cohorts. For TP53 mutations, the negative effect on overall survival was confirmed in an independent external cohort (n = 466). TP53 mutation was frequently found in IGH-DUX4 (5 of 57 [9%]) ALL, with 4 cases having 17p LOH and negatively affecting overall survival therein, whereas TP53 mutation was not associated with poor outcomes among NCI (National Cancer Institute) standard risk (SR) patients. A conventional treatment approach might be enough, and further treatment intensification might not be necessary, for patients with TP53 mutations if they are categorized into NCI SR.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfócitos B , Criança , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Prognóstico
14.
Commun Biol ; 3(1): 544, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999426

RESUMO

To elucidate the molecular pathogenesis of pediatric germ cell tumors (GCTs), we performed DNA methylation array analysis, whole transcriptome sequencing, targeted capture sequencing, and single-nucleotide polymorphism array analysis using 51 GCT samples (25 female, 26 male), including 6 germinomas, 2 embryonal carcinomas, 4 immature teratomas, 3 mature teratomas, 30 yolk sac tumors, and 6 mixed germ cell tumors. Among the 51 samples, 11 were from infants, 23 were from young children, and 17 were from those aged ≥10 years. Sixteen of the 51 samples developed in the extragonadal regions. Germinomas showed upregulation of pluripotent genes and global hypomethylation. Pluripotent genes were also highly expressed in embryonal carcinomas. These genes may play essential roles in embryonal carcinomas given that their binding sites are hypomethylated. Yolk sac tumors exhibited overexpression of endodermal genes, such as GATA6 and FOXA2, the binding sites of which were hypomethylated. Interestingly, infant yolk sac tumors had different DNA methylation patterns from those observed in older children. Teratomas had higher expression of ectodermal genes, suggesting a tridermal nature. Based on our results, we suggest that KIT, TNFRSF8, and ERBB4 may be suitable targets for the treatment of germinoma, embryonal carcinomas, and yolk sac tumors, respectively.


Assuntos
Neoplasias Embrionárias de Células Germinativas/genética , Carcinoma Embrionário/genética , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Metilação de DNA , Tumor do Seio Endodérmico/genética , Feminino , Germinoma/genética , Humanos , Lactente , Masculino , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Teratoma/genética , Sequenciamento do Exoma
15.
NPJ Precis Oncol ; 4: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656360

RESUMO

Although hepatoblastoma is the most common pediatric liver cancer, its genetic heterogeneity and therapeutic targets are not well elucidated. Therefore, we conducted a multiomics analysis, including mutatome, DNA methylome, and transcriptome analyses, of 59 hepatoblastoma samples. Based on DNA methylation patterns, hepatoblastoma was classified into three clusters exhibiting remarkable correlation with clinical, histological, and genetic features. Cluster F was largely composed of cases with fetal histology and good outcomes, whereas clusters E1 and E2 corresponded primarily to embryonal/combined histology and poor outcomes. E1 and E2, albeit distinguishable by different patient age distributions, were genetically characterized by hypermethylation of the HNF4A/CEBPA-binding regions, fetal liver-like expression patterns, upregulation of the cell cycle pathway, and overexpression of NQO1 and ODC1. Inhibition of NQO1 and ODC1 in hepatoblastoma cells induced chemosensitization and growth suppression, respectively. Our results provide a comprehensive description of the molecular basis of hepatoblastoma and rational therapeutic strategies for high-risk cases.

17.
Cancer Sci ; 110(10): 3358-3367, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31385395

RESUMO

Children with Down syndrome (DS) are at a 20-fold increased risk for acute lymphoblastic leukemia (ALL). Compared to children with ALL and no DS (non-DS-ALL), those with DS and ALL (DS-ALL) harbor uncommon genetic alterations, suggesting DS-ALL could have distinct biological features. Recent studies have implicated several genes on chromosome 21 in DS-ALL, but the precise mechanisms predisposing children with DS to ALL remain unknown. Our integrated genetic/epigenetic analysis revealed that DS-ALL was highly heterogeneous with many subtypes. Although each subtype had genetic/epigenetic profiles similar to those found in non-DS-ALL, the subtype distribution differed significantly between groups. The Philadelphia chromosome-like subtype, a high-risk B-cell lineage variant relatively rare among the entire pediatric ALL population, was the most common form in DS-ALL. Hypermethylation of RUNX1 on chromosome 21 was also found in DS-ALL, but not non-DS-ALL. RUNX1 is essential for differentiation of blood cells, especially B cells; thus, hypermethylation of the RUNX1 promoter in B-cell precursors might be associated with increased incidence of B-cell precursor ALL in DS patients.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Metilação de DNA , Síndrome de Down/complicações , Perfilação da Expressão Gênica/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Diferenciação Celular , Criança , Cromossomos Humanos Par 21/genética , Síndrome de Down/genética , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Cromossomo Filadélfia , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Análise de Sequência de RNA
18.
Cancer Res ; 78(4): 865-876, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29233928

RESUMO

Pancreatoblastoma is a rare pediatric pancreatic malignancy for which the molecular pathogenesis is not understood. In this study, we report the findings of an integrated multiomics study of whole-exome and RNA sequencing as well as genome-wide copy number and methylation analyses of ten pancreatoblastoma cases. The pancreatoblastoma genome was characterized by a high frequency of aberrant activation of the Wnt signaling pathway, either via somatic mutations of CTNNB1 (90%) and copy-neutral loss of heterozygosity (CN-LOH) of APC (10%). In addition, imprinting dysregulation of IGF2 as a consequence of CN-LOH (80%), gain of paternal allele (10%), and gain of methylation (10%) was universally detected. At the transcriptome level, pancreatoblastoma exhibited an expression profile characteristic of early pancreas progenitor-like cells along with upregulation of the R-spondin/LGR5/RNF43 module. Our results offer a comprehensive description of the molecular basis for pancreatoblastoma and highlight rational therapeutic targets for its treatment.Significance: Molecular genetic analysis of a rare untreatable pediatric tumor reveals Wnt/IGF2 aberrations and features of early pancreas progenitor-like cells, suggesting cellular origins and rational strategies for therapeutic targeting. Cancer Res; 78(4); 865-76. ©2017 AACR.


Assuntos
Exoma/genética , Perfilação da Expressão Gênica/métodos , Neoplasias Pancreáticas/genética , Criança , Feminino , Humanos , Masculino , Neoplasias Pancreáticas/patologia
19.
Nat Genet ; 49(8): 1274-1281, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28671687

RESUMO

The outcome of treatment-refractory and/or relapsed pediatric T cell acute lymphoblastic leukemia (T-ALL) is extremely poor, and the genetic basis for this is not well understood. Here we report comprehensive profiling of 121 cases of pediatric T-ALL using transcriptome and/or targeted capture sequencing, through which we identified new recurrent gene fusions involving SPI1 (STMN1-SPI1 and TCF7-SPI1). Cases positive for fusions involving SPI1 (encoding PU.1), accounting for 3.9% (7/181) of the examined pediatric T-ALL cases, showed a double-negative (DN; CD4-CD8-) or CD8+ single-positive (SP) phenotype and had uniformly poor overall survival. These cases represent a subset of pediatric T-ALL distinguishable from the known T-ALL subsets in terms of expression of genes involved in T cell precommitment, establishment of T cell identity, and post-ß-selection maturation and with respect to mutational profile. PU.1 fusion proteins retained transcriptional activity and, when constitutively expressed in mouse stem/progenitor cells, induced cell proliferation and resulted in a maturation block. Our findings highlight a unique role of SPI1 fusions in high-risk pediatric T-ALL.


Assuntos
Fusão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Adolescente , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Análise de Sobrevida , Subpopulações de Linfócitos T
20.
Oncotarget ; 8(64): 107513-107529, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29296183

RESUMO

To provide better insight into the genetic signatures of neuroblastomas, we analyzed 500 neuroblastomas (included specimens from JNBSG) using targeted-deep sequencing for 10 neuroblastoma-related genes and SNP arrays analysis. ALK expression was evaluated using immunohistochemical analysis in 259 samples. Based on genetic alterations, the following 6 subgroups were identified: groups A (ALK abnormalities), B (other gene mutations), C (MYCN amplification), D (11q loss of heterozygosity [LOH]), E (at least 1 copy number variants), and F (no genetic changes). Groups A to D showed advanced disease and poor prognosis, whereas groups E and F showed excellent prognosis. Intriguingly, in group A, MYCN amplification was not a significant prognostic marker, while high ALK expression was a relevant indicator for prognosis (P = 0.033). Notably, the co-existence of MYCN amplification and 1p LOH, and the co-deletion of 3p and 11q were significant predictors of relapse (P = 0.043 and P = 0.040). Additionally, 6q/8p LOH and 17q gain were promising indicators of survival in patients older than 5 years, and 1p, 4p, and 11q LOH potentially contributed to outcome prediction in the intermediate-risk group. Our genetic overview clarifies the clinical impact of genetic signatures and aids in the better understanding of genetic basis of neuroblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA