Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Parkinsonism Relat Disord ; 121: 106034, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382401

RESUMO

INTRODUCTION: Connector hubs are specialized brain regions that connect multiple brain networks and therefore have the potential to affect the functions of multiple systems. This study aims to examine the involvement of connector hub regions in essential tremor. METHODS: We examined whole-brain functional connectivity alterations across multiple brain networks in 27 patients with essential tremor and 27 age- and sex-matched healthy controls to identify affected hub regions using a network metric called functional connectivity overlap ratio estimated from resting-state functional MRI. We also evaluated the relationships of affected hubs with cognitive and tremor scores in all patients and with motor function improvement scores in 15 patients who underwent postoperative follow-up evaluations after focused ultrasound thalamotomy. RESULTS: We have identified affected connector hubs in the cerebellum and thalamus. Specifically, the dentate nucleus in the cerebellum and the dorsomedial thalamus exhibited more extensive connections with the sensorimotor network in patients. Moreover, the connections of the thalamic pulvinar with the visual network were also significantly widespread in the patient group. The connections of these connector hub regions with cognitive networks were negatively associated (FDR q < 0.05) with cognitive, tremor, and motor function improvement scores. CONCLUSION: In patients with essential tremor, connector hub regions within the cerebellum and thalamus exhibited widespread functional connections with sensorimotor and visual networks, leading to alternative pathways outside the classical tremor axis. Their connections with cognitive networks also affect patients' cognitive function.


Assuntos
Tremor Essencial , Humanos , Tremor Essencial/cirurgia , Tremor , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Cerebelo/diagnóstico por imagem , Cognição
2.
Magn Reson Med Sci ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123345

RESUMO

PURPOSE: Hemodynamics is important in the initiation, growth, and rupture of intracranial aneurysms. Since intracranial aneurysms are small, a high-field MR system with high spatial resolution and high SNR is desirable for this hemodynamic analysis. The purpose of this study was to investigate whether the accuracy of MR fluid dynamic (MRFD) results based on 3D phase-contrast MR (3D PC MR, non-electrocardiogram[ECG]-gated 4D Flow MRI) data from a human cerebrovascular phantom and human healthy subjects obtained by a 7T MR system was superior to those by a 3T MR system. METHODS: 3D PC MR and 3D time of flight MR angiography (3D TOF MRA) imaging were performed on a 3T MR system and a 7T MR system for a human cerebrovascular phantom and 10 healthy human subjects, and MRFD analysis was performed using these data. The MRFD results from each MR system were then compared with the following items based on the computational fluid dynamics (CFD) results: 3D velocity vector field; correlation coefficient (R), angular similarity index (ASI), and magnitude similarity index (MSI) of blood flow velocity vectors. RESULTS: In the MRFD results of 3D velocity vectors of the cerebrovascular phantom, noise-like vectors were observed near the vascular wall on the 3T MR system, but no noise was observed on the 7T MR system, showing results similar to those of CFD. In the MRFD results of the cerebrovascular phantom and healthy subjects, the correlation coefficients R, ASI, and MSI of the 7T MR system were higher than those of the 3T MR system, and ASI and MSI of healthy human subjects were significantly different between the two systems. CONCLUSIONS: The accuracy of high spatial resolution MRFD using the 7T MR system exceeded that of the 3T MR system.

3.
Radiol Phys Technol ; 15(4): 298-310, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35960494

RESUMO

In multisite studies, differences in imaging acquisition systems could affect the reproducibility of the results when examining changes in brain function using resting-state functional magnetic resonance imaging (rs-fMRI). This is also important for longitudinal studies, in which changes in equipment settings can occur. This study examined the reproducibility of functional connectivity (FC) metrics estimated from rs-fMRI data acquired using scanner receiver coils with different numbers of channels. This study involved 80 rs-fMRI datasets from 20 healthy volunteers scanned in two independent imaging sessions using both 12- and 32-channel coils for each session. We used independent component analysis (ICA) to evaluate the FC of canonical resting-state networks (RSNs) and graph theory to calculate several whole-brain network metrics. The effect of global signal regression (GSR) as a preprocessing step was also considered. Comparisons within and between receiver coils were performed. Irrespective of the GSR, RSNs derived from rs-fMRI data acquired using the same receiver coil were reproducible, but not from different receiver coils. However, both the GSR and the channel count of the receiver coil have discernible effects on the reproducibility of network metrics estimated using whole-brain network analysis. The data acquired using the 32-channel coil tended to have better reproducibility than those acquired using the 12-channel coil. Our findings suggest that the reproducibility of FC metrics estimated from rs-fMRI data acquired using different receiver coils showed some level of dependence on the preprocessing method and the type of analysis performed.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Mapeamento Encefálico/métodos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis
4.
Neuroimage ; 257: 119263, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35500805

RESUMO

Accumulating evidence from anatomical and neuroimaging studies suggests that the cerebellum is engaged in a variety of motor and cognitive tasks. Given its various functions, a key question is whether the cerebellum also plays an important role in the brain's integrative functions. Here, we hypothesize the existence of connector regions, also known as connector hubs, where multiple resting state networks converged in the cerebellum. To verify this, we employed a recently developed voxel-level network measure called functional connectivity overlap ratio (FCOR), which could be used to quantify the spatial extent of a region's connection to several large-scale cortical networks. Using resting state functional MRI data from 101 healthy participants, cerebellar FCOR maps were constructed and used to identify the locations of connector hubs in the cerebellum. Results showed that a number of cerebellar regions exhibited strong connectivity with multiple functional networks, verifying our hypothesis. These highly connected regions were located in the posterior cerebellum, especially in lobules VI, VII, and IX, and mainly connected to the core neurocognitive networks such as default mode and executive control networks. Regions associated with the sensorimotor network were also localized in lobule V, VI, and VIII, albeit in small clusters. These cerebellar connector hubs may play an essential role in the processing of information across the core neurocognitive networks.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Cerebelo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Neuroimagem
5.
Magn Reson Med Sci ; 21(2): 278-292, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197395

RESUMO

In recent years, 4D flow MRI has become increasingly important in clinical applications for the blood vessels in the whole body, heart, and cerebrospinal fluid. 4D flow MRI has advantages over 2D cine phase-contrast (PC) MRI in that any targeted area of interest can be analyzed post-hoc, but there are some factors to be considered, such as ensuring measurement accuracy, a long imaging time and post-processing complexity, and interobserver variability.Due to the partial volume phenomenon caused by low spatial and temporal resolutions, the accuracy of flow measurement in 4D flow MRI is reduced. For spatial resolution, it is recommended to include at least four voxels in the vessel of interest, and if possible, six voxels. In large vessels such as the aorta, large voxels can be secured and SNR can be maintained, but in small cerebral vessels, SNR is reduced, resulting in reduced accuracy. A temporal resolution of less than 40 ms is recommended. The velocity-to-noise ratio (VNR) of low-velocity blood flow is low, resulting in poor measurement accuracy. The use of dual velocity encoding (VENC) or multi-VENC is recommended to avoid velocity wrap around and to increase VNR. In order to maintain sufficient spatio-temporal resolution, a longer imaging time is required, leading to potential patient movement during examination and a corresponding decrease in measurement accuracy.For the clinical application of new technologies, including various acceleration techniques, in vitro and in vivo accuracy verification based on existing accuracy-validated 2D cine PC MRI and 4D flow MRI, as well as accuracy verification on the conservation of mass' principle, should be performed, and intraobserver repeatability, interobserver reproducibility, and test-retest reproducibility should be checked.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Velocidade do Fluxo Sanguíneo , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Controle de Qualidade , Reprodutibilidade dos Testes
6.
Magn Reson Med Sci ; 21(2): 267-277, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35153275

RESUMO

Recently, the hemodynamic assessments with 3D cine phase-contrast (PC) MRI (4D flow MRI) have attracted considerable attention from clinicians. Unlike 2D cine PC MRI, the technique allows for cardiac phase-resolved data acquisitions of flow velocity vectors within the entire FOV during a clinically viable period. Thus, the method has enabled retrospective flowmetry in the spatial and temporal axes, which are essential to derive hemodynamic parameters related to vascular homeostasis and those to the progression of the pathologies. Accelerations in imaging are critical for this technology to be clinically viable; however, a high SNR or velocity-to-noise ratio (VNR) is also vital for accurate flow measurements. In this chapter, the technologies enabling this difficult balance are discussed.


Assuntos
Coração , Imageamento por Ressonância Magnética , Velocidade do Fluxo Sanguíneo , Hemodinâmica , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Estudos Retrospectivos
7.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35045976

RESUMO

The aging brain undergoes structural changes even in very healthy individuals. Quantifying these changes could help disentangle pathologic changes from those associated with the normal human aging process. Using longitudinal magnetic resonance imaging (MRI) data from 227 carefully selected healthy human cohort with age ranging from 50 to 80 years old at baseline scan, we quantified age-related volumetric changes in the brain of healthy human older adults. Longitudinally, the rates of tissue loss in total gray matter (GM) and white matter (WM) were 2497.5 and 2579.8 mm3 per year, respectively. Across the whole brain, the rates of GM decline varied with regions in the frontal and parietal lobes having faster rates of decline, whereas some regions in the occipital and temporal lobes appeared relatively preserved. In contrast, cross-sectional changes were mainly observed in the temporal-occipital regions. Similar longitudinal atrophic changes were also observed in subcortical regions including thalamus, hippocampus, putamen, and caudate, whereas the pallidum showed an increasing volume with age. Overall, regions maturing late in development (frontal, parietal) are more vulnerable to longitudinal decline, whereas those that fully mature in the early stage (temporal, occipital) are mainly affected by cross-sectional changes in healthy older cohort. This may suggest that, for a successful healthy aging, the former needs to be maximally developed at an earlier age to compensate for the longitudinal decline later in life and the latter to remain relatively preserved even in old age, consistent with both concepts of reserve and brain maintenance.


Assuntos
Envelhecimento , Encéfalo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos Transversais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade
8.
J Neurosurg ; 136(3): 619-626, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34416714

RESUMO

OBJECTIVE: De novo aneurysms generally develop in healthy vessels after parent artery occlusion for large internal carotid artery (ICA) aneurysm, possibly owing to increased hemodynamic stress in the remaining vessels. In recent years, there has been a shift toward flow diverter stent treatment. However, there is a lack of direct evidence and data that prove this change in hemodynamic stress in healthy vessels after parent artery occlusion and flow diverter stent treatment. The authors compared hemodynamic stress in healthy-side vessels before and after parent artery occlusion and flow diverter treatments. METHODS: The authors included patients who underwent 3D cine phase-contrast MRI before and after large ICA aneurysm treatment. Spatially and temporally averaged volume flow rates and spatially averaged systolic wall shear stress (WSS) in healthy-side ICA distal to the posterior communicating artery (C1 segment according to Fisher's classification) were measured before and after parent artery occlusion and flow diverter treatments. RESULTS: Seventeen patients were included (5 patients in the parent artery occlusion group and 12 in the flow diverter group). At 1-2 months after treatment, median volume flow rate in healthy-side ICA increased from 5.36 ml/sec to 6.28 ml/sec (total increase 117%, p = 0.04) in the parent artery occlusion group and from 4.65 ml/sec to 4.93 ml/sec (total increase 106%, p = 0.02) in the flow diverter group. In the parent artery occlusion group, median WSS in the C1 segment of the healthy-side ICA increased from 3.91 Pa to 5.61 Pa (total increase 143%, p = 0.08); however, no significant increase was observed in the flow diverter group (4.29 Pa to 4.57 Pa [total increase 107%, p = 0.21]). CONCLUSIONS: Postoperatively, volume flow rate and WSS in the C1 segment of the healthy-side ICA significantly increased in the parent artery occlusion group. Therefore, the parent artery occlusion group was more prone to de novo aneurysm than the flow diverter group.


Assuntos
Doenças das Artérias Carótidas , Aneurisma Intracraniano , Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/cirurgia , Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/cirurgia , Hemodinâmica , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Stents
9.
Front Hum Neurosci ; 15: 753836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803636

RESUMO

Purpose: Maintenance of cognitive performance is important for healthy aging. This study aims to elucidate the relationship between brain networks and cognitive function in subjects maintaining relatively good cognitive performance. Methods: A total of 120 subjects, with equal number of participants from each age group between 20 and 70 years, were included in this study. Only participants with Addenbrooke's Cognitive Examination - Revised (ACE-R) total score greater than 83 were included. Anatomical T1-weighted MR images and resting-state functional MR images (rsfMRIs) were taken from all participants using a 3-tesla MRI scanner. After preprocessing, several factors associated with age including the ACE-R total score, scores of five domains, sub-scores of ACE-R, and brain volumes were tested. Morphometric changes associated with age were analyzed using voxel based morphometry (VBM) and changes in resting state networks (RSNs) were examined using dual regression analysis. Results: Significant negative correlations with age were seen in the total gray matter volume (GMV, r = -0.58), and in the memory, attention, and visuospatial domains. Among the different sub-scores, the score of the delayed recall (DR) showed the highest negative correlation with age (r = -0.55, p < 0.001). In VBM analysis, widespread regions demonstrated negative correlation with age, but none with any of the cognitive scores. Quadratic approximations of cognitive scores as functions of age showed relatively delayed decline compared to total GMV loss. In dual regression analysis, some cognitive networks, including the dorsal default mode network, the lateral dorsal attention network, the right / left executive control network, the posterior salience network, and the language network, did not demonstrate negative correlation with age. Some regions in the sensorimotor networks showed positive correlation with the DR, memory, and fluency scores. Conclusion: Some domains of the cognitive test did not correlate with age, and even the highly correlated sub-scores such as the DR score, showed delayed decline compared to the loss of total GMV. Some RSNs, especially involving cognitive control regions, were relatively maintained with age. Furthermore, the scores of memory, fluency, and the DR were correlated with the within-network functional connectivity values of the sensorimotor network, which supported the importance of exercise for maintenance of cognition.

10.
iScience ; 24(10): 103106, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34622159

RESUMO

The thalamus is critical for the brain's integrative hub functions; however, the localization and characterization of the different thalamic hubs remain unclear. Using a voxel-level network measure called functional connectivity overlap ratio (FCOR), we examined the thalamus' association with large-scale resting-state networks (RSNs) to elucidate its connector hub roles. Connections to the core-neurocognitive networks were localized in the anterior and medial parts, such as the anteroventral and mediodorsal nuclei areas. Regions functionally connected to the sensorimotor network were distinctively located around the lateral pulvinar nucleus but to a limited extent. Prominent connector hubs include the anteroventral, ventral lateral, and mediodorsal nuclei with functional connections to multiple RSNs. These findings suggest that the thalamus, with extensive connections to most of the RSNs, is well placed as a critical integrative functional hub and could play an important role for functional integration facilitating brain functions associated with primary processing and higher cognition.

11.
Technol Health Care ; 29(2): 253-267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32568138

RESUMO

BACKGROUND: The haemodynamics determined by different approaches for studying fluid dynamics - i.e. computational fluid dynamics (CFD), particle image velocimetry (PIV), and phase-contrast magnetic resonance imaging (PC-MRI) - have rarely been thoroughly compared; nor have the factors that affect accuracy and precision in each method. As each method has its own advantages and limitations, this knowledge is important for future studies to be able to achieve valid analyses of fluid flows. OBJECTIVE: To gauge the capacity of these methods for analysing aneurysmal flows, we compared the haemodynamic behaviours determined by each method within a patient-specific aneurysm model. METHODS: An in vitro silicone aneurysm model was fabricated for PIV and PC-MRI, and an in silico aneurysm model with the same geometry was reconstructed for CFD. With the same fluid model prepared numerically and physically, CFD, PIV and PC-MRI were performed to study aneurysmal haemodynamics. RESULTS: 2D velocity vectors and magnitudes show good agreement between PIV and CFD, and 3D flow patterns show good similarity between PC-MRI and CFD. CONCLUSIONS: These findings give confidence to future haemodynamic studies using CFD technology. For the first time, the morphological inconsistency between the PCMRI model and others is found to affect the measurement of local flow patterns.


Assuntos
Aneurisma Intracraniano , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Hemodinâmica , Humanos , Hidrodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Imageamento por Ressonância Magnética , Modelos Cardiovasculares , Reologia
12.
Magn Reson Med Sci ; 20(4): 338-346, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115986

RESUMO

PURPOSE: The estimation of functional connectivity (FC) measures using resting state functional MRI (fMRI) is often affected by head motion during functional imaging scans. Head motion is more common in the elderly than in young participants and could therefore affect the evaluation of age-related changes in brain networks. Thus, this study aimed to investigate the influence of head motion in FC estimation when evaluating age-related changes in brain networks. METHODS: This study involved 132 healthy volunteers divided into 3 groups: elderly participants with high motion (OldHM, mean age (±SD) = 69.6 (±5.31), N = 44), elderly participants with low motion (OldLM, mean age (±SD) = 68.7 (±4.59), N = 43), and young adult participants with low motion (YugLM, mean age (±SD) = 27.6 (±5.26), N = 45). Head motion was quantified using the mean of the framewise displacement of resting state fMRI data. After preprocessing all resting state fMRI datasets, several resting state networks (RSNs) were extracted using independent component analysis (ICA). In addition, several network metrics were also calculated using network analysis. These FC measures were then compared among the 3 groups. RESULTS: In ICA, the number of voxels with significant differences in RSNs was higher in YugLM vs. OldLM comparison than in YugLM vs. OldHM. In network analysis, all network metrics showed significant (P < 0.05) differences in comparisons involving low vs. high motion groups (OldHM vs. OldLM and OldHM vs. YugLM). However, there was no significant (P > 0.05) difference in the comparison involving the low motion groups (OldLM vs. YugLM). CONCLUSION: Our findings showed that head motion during functional imaging could significantly affect the evaluation of age-related brain network changes using resting state fMRI data.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Idoso , Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Humanos , Movimento (Física) , Adulto Jovem
13.
Front Aging Neurosci ; 12: 592469, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192489

RESUMO

Recent studies have demonstrated that connector hubs, regions considered critical for the flow of information across neural systems, are mostly involved in neurodegenerative dementia. Considering that aging can significantly affect the brain's intrinsic connectivity, identifying aging's impact on these regions' overall connection strength is important to differentiate changes associated with healthy aging from neurodegenerative disorders. Using resting state functional magnetic resonance imaging data from a carefully selected cohort of 175 healthy volunteers aging from 21 to 86 years old, we computed an intrinsic connectivity contrast (ICC) metric, which quantifies a region's overall connectivity strength, for whole brain, short-range, and long-range connections and examined age-related changes of this metric over the adult lifespan. We have identified a limited number of hub regions with ICC values that showed significant negative relationship with age. These include the medial precentral/midcingulate gyri and insula with both their short-range and long-range (and thus whole-brain) ICC values negatively associated with age, and the angular, middle frontal, and posterior cingulate gyri with their long-range ICC values mainly involved. Seed-based connectivity analyses further confirmed that these regions are connector hubs with connectivity profile that strongly overlapped with multiple large-scale brain networks. General cognitive performance was not associated with these hubs' ICC values. These findings suggest that even healthy aging could negatively impact the efficiency of regions critical for facilitating information transfer among different functional brain networks. The extent of the regions involved, however, was limited.

14.
Phys Eng Sci Med ; 43(4): 1327-1337, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33044647

RESUMO

The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements.


Assuntos
Aneurisma Intracraniano , Angiografia por Ressonância Magnética , Angiografia por Tomografia Computadorizada , Estudos Transversais , Humanos , Hidrodinâmica
15.
Neuroimage ; 222: 117241, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798679

RESUMO

Neuroimaging studies have shown that the brain is functionally organized into several large-scale brain networks. Within these networks are regions that are widely connected to several other regions within and/or outside the network. Regions that connect to several other networks, known as connector hubs, are believed to be crucial for information transfer and between-network communication within the brain. To identify regions with high between-network connectivity at the voxel level, we introduced a novel metric called functional connectivity overlap ratio (FCOR), which quantifies the spatial extent of a region's connection to a given network. Using resting state functional magnetic resonance imaging data, FCOR maps were generated for several well-known large-scale resting state networks (RSNs) and used to examine the relevant associations among different RSNs, identify connector hub regions in the cerebral cortex, and elucidate the hierarchical functional organization of the brain. Constructed FCOR maps revealed a strong association among the core neurocognitive networks (default mode, salience, and executive control) as well as among primary processing networks (sensorimotor, auditory, and visual). Prominent connector hubs were identified in the bilateral middle frontal gyrus, posterior cingulate, lateral parietal, middle temporal, dorsal anterior cingulate, and anterior insula, among others, regions mostly associated with the core neurocognitive networks. Finally, clustering the whole brain using FCOR features yielded a topological organization that arranges brain regions into a hierarchy of information processing systems with the primary processing systems at one end and the heteromodal systems comprising connector hubs at the other end.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Adulto , Córtex Cerebral/fisiologia , Função Executiva , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
16.
Magn Reson Med Sci ; 19(3): 235-246, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32655086

RESUMO

PURPOSE: To characterize the non-laminar flow dynamics and resultant decreased wall shear stress (WSS) and high oscillatory shear index (OSI) of the infrarenal abdominal aortic dilatation, cardiac phase-resolved 3D phase-contrast MRI (4D-flow MRI) was performed. METHODS: The prospective single-arm study was approved by the Institutional Review Board and included 18 subjects (median 67.5 years) with the dilated infrarenal aorta (median diameter 35 mm). 4D-flow MRI was conducted on a 1.5T MRI system. On 3D streamline images, laminar and non-laminar (i.e., vortex or helical) flow patterns were visually assessed both for the dilated aorta and for the undilated upstream aorta. Cardiac phase-resolved flow velocities, WSS and OSI, were also measured for the dilated aorta and the upstream undilated aorta. RESULTS: Non-laminar flow represented by vortex or helical flow was more frequent and overt in the dilated aorta than in the undilated upstream aorta (P < 0.0156) with a very good interobserver agreement (weighted kappa: 0.82-1.0). The WSS was lower, and the OSI was higher on the dilated aortic wall compared with the proximal undilated segments. In mid-systole, mean spatially-averaged WSS was 0.20 ± 0.016 Pa for the dilated aorta vs. 0.68 ± 0.071 Pa for undilated upstream aorta (P < 0.0001), and OSI on the dilated aortic wall was 0.093 ± 0.010 vs. 0.041 ± 0.0089 (P = 0.013). The maximum values and the amplitudes of the WSS at the dilated aorta were inversely proportional to the ratio of dilated/undilated aortic diameter (r = -0.694, P = 0.0014). CONCLUSION: 4D-flow can characterize abnormal non-laminar flow dynamics within the dilated aorta in vivo. The wall of the infrarenal aortic dilatation is continuously and increasingly affected by atherogenic stimuli due to the flow disturbances represented by vortex or helical flow, which is reflected by lower WSS and higher OSI.


Assuntos
Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/fisiopatologia , Velocidade do Fluxo Sanguíneo/fisiologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Idoso , Idoso de 80 Anos ou mais , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Hum Brain Mapp ; 41(12): 3198-3211, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32304267

RESUMO

White matter (WM) fiber bundles change dynamically with age. These changes could be driven by alterations in axonal diameter, axonal density, and myelin content. In this study, we applied a novel fixel-based analysis (FBA) framework to examine these changes throughout the adult lifespan. Using diffusion-weighted images from a cohort of 293 healthy volunteers (89 males/204 females) from ages 21 to 86 years old, we performed FBA to analyze age-related changes in microscopic fiber density (FD) and macroscopic fiber morphology (fiber cross section [FC]). Our results showed significant and widespread age-related alterations in FD and FC across the whole brain. Interestingly, some fiber bundles such as the anterior thalamic radiation, corpus callosum, and superior longitudinal fasciculus only showed significant negative relationship with age in FD values, but not in FC. On the other hand, some segments of the cerebello-thalamo-cortical pathway only showed significant negative relationship with age in FC, but not in FD. Analysis at the tract-level also showed that major fiber tract groups predominantly distributed in the frontal lobe (cingulum, forceps minor) exhibited greater vulnerability to the aging process than the others. Differences in FC and the combined measure of FD and cross section values observed between sexes were mostly driven by differences in brain sizes although male participants tended to exhibit steeper negative linear relationship with age in FD as compared to female participants. Overall, these findings provide further insights into the structural changes the brain's WM undergoes due to the aging process.


Assuntos
Envelhecimento/fisiologia , Imagem de Difusão por Ressonância Magnética , Desenvolvimento Humano/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Fatores Sexuais , Substância Branca/diagnóstico por imagem , Adulto Jovem
18.
Magn Reson Med Sci ; 19(4): 366-374, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32009062

RESUMO

PURPOSE: 2D cine phase contrast (PC)-MRI is a standard velocimetry for the superior mesenteric artery (SMA); however, the optimal localization of the measurement plane has never been fully discussed previously. The purpose of this Institutional Review Board approved prospective and single arm study is to test whether flow velocimetry of the SMA with combined use of 2D cine PC-MRI and meal challenge is dependent on the localizations of the measurement planes and to seek optimal section for velocimetry. METHODS: Seven healthy volunteers underwent cardiac phase resolved ECG gated 2D cine PC-MRI pre- and 30 min post-meal challenge at three measurement planes: proximal, curved mid section and distal straight section of the SMA at 3T. 4D Flow using 3D cine PC-MRI with vastly undersampled isotropic projection imaging (PC VIPR) was also performed right after 2D cine PC-MRI to delineate the flow dynamics within the SMA using streamline analysis. Two radiologists measured flow velocities, and rated the appearances of the abnormal flow in the SMA on streamlines derived from the 4D Flow and the computational fluid dynamics (CFD). RESULTS: 2D cine PC-MRI measured increased temporally averaged flow velocity (mm/s) after the meal challenge only in the proximal (129.3 vs. 97.8, P = 0.0313) and distal section (166.9 vs. 96.2, P = 0.0313), not in the curved mid section (113.1 vs. 85.5, P = 0.0625). The average velocities were highest and their standard errors (8.5-26.5) were smallest at the distal straight section both before and after the meal challenge as compared with other sections. The streamline analysis depicted more frequent appearances of vertical or helical flow in the curved mid section both on 4D Flow and CFD (κ: 0.27-0.68). CONCLUSION: SMA velocimetry with 2D cine PC-MRI was dependent on the localization of the measurement planes. Distal straight section, not in the curved mid section is recommended for MR velocimetry.


Assuntos
Velocidade do Fluxo Sanguíneo , Hidrodinâmica , Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética , Artéria Mesentérica Superior/diagnóstico por imagem , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Prandial , Estudos Prospectivos , Reologia , Adulto Jovem
19.
Magn Reson Med Sci ; 19(4): 333-344, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31956175

RESUMO

PURPOSE: Evaluate in vivo hemodynamic and morphological biomarkers of intracranial aneurysms, using magnetic resonance fluid dynamics (MRFD) and MR-based patient specific computational fluid dynamics (CFD) in order to assess the risk of rupture. METHODS: Forty-eight intracranial aneurysms (10 ruptured, 38 unruptured) were scrutinized for six morphological and 10 hemodynamic biomarkers. Morphological biomarkers were calculated based on 3D time-of-flight magnetic resonance angiography (3D TOF MRA) in MRFD analysis. Hemodynamic biomarkers were assessed using both MRFD and CFD analyses. MRFD was performed using 3D TOF MRA and 3D cine phase-contrast magnetic resonance imaging (3D cine PC MRI). CFD was performed utilizing patient specific inflow-outflow boundary conditions derived from 3D cine PC MRI. Univariate analysis was carried out to identify statistically significant biomarkers for aneurysm rupture and receiver operating characteristic (ROC) analysis was performed for the significant biomarkers. Binary logistic regression was performed to identify independent predictive biomarkers. RESULTS: Morphological biomarker analysis revealed that aneurysm size [P = 0.021], volume [P = 0.035] and size ratio [P = 0.039] were statistically significantly different between the two groups. In hemodynamic biomarker analysis, MRFD results indicated that ruptured aneurysms had higher oscillatory shear index (OSI) [OSI.max, P = 0.037] and higher relative residence time (RRT) [RRT.ave, P = 0.035] compared with unruptured aneurysms. Correspondingly CFD analysis demonstrated significant differences for both average and maximum OSI [OSI.ave, P = 0.008; OSI.max, P = 0.01] and maximum RRT [RRT.max, P = 0.045]. ROC analysis revealed AUC values greater than 0.7 for all significant biomarkers. Aneurysm volume [AUC, 0.718; 95% CI, 0.491-0.946] and average OSI obtained from CFD [AUC, 0.774; 95% CI, 0.586-0.961] were retained in the respective logistic regression models. CONCLUSION: Both morphological and hemodynamic biomarkers have significant influence on intracranial aneurysm rupture. Aneurysm size, volume, size ratio, OSI and RRT could be potential biomarkers to assess aneurysm rupture risk.


Assuntos
Aneurisma Roto/diagnóstico por imagem , Hemodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Angiografia por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Biomarcadores , Feminino , Humanos , Hidrodinâmica , Imageamento Tridimensional , Espectroscopia de Ressonância Magnética , Masculino , Curva ROC , Estudos Retrospectivos
20.
Nagoya J Med Sci ; 81(4): 629-636, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31849380

RESUMO

Hyperperfusion syndrome occurs after treatment of a large or giant cerebral aneurysm. Recently, flow-diverter stent placement has emerged as an effective treatment method for a large cerebral aneurysm, but postoperative ipsilateral delayed intraparenchymal hemorrhage occurs in a minority of cases. The mechanism underlying delayed intraparenchymal hemorrhage is not established, but one possibility is hyperperfusion syndrome. The incidence of delayed intraparenchymal hemorrhage appears to be higher for giant aneurysms; hence, we speculated that large/giant aneurysms may create flow resistance, and mitigation by flow-diverter stent deployment leads to hyperperfusion syndrome and delayed intraparenchymal hemorrhage. The purpose of this study was to identify aneurysm characteristics promoting flow resistance by the analysis of pressure loss in an internal carotid artery paraclinoid aneurysm model using computational fluid dynamics. A virtual U-shaped model of the internal carotid artery siphon portion was created with a spherical aneurysm of various angles, body diameters, and neck diameters. Visualization of streamlines, were calculated of pressure loss between proximal and distal sides of the aneurysm, and vorticity within the aneurysm were calculated. The pressure loss and vorticity demonstrated similar changes according to angle, peaking at 60°. In contrast, aneurysm diameter had little influence on pressure loss. Larger neck width, however, increases pressure loss. Our model predicts that aneurysm location and neck diameter can increase the flow resistance from a large internal carotid artery aneurysm. Patients with large aneurysm angles and neck diameters may be at increased risk of hyperperfusion syndrome and ensuing delayed intraparenchymal hemorrhage following flow-diverter stent treatment.


Assuntos
Artéria Carótida Interna/fisiologia , Aneurisma Intracraniano/fisiopatologia , Humanos , Hidrodinâmica , Modelos Teóricos , Período Pós-Operatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA